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Abstract

A new set of benchmarks has been developed for the performance evalua-

tion of highly parallel supercomputers. These benchmarks consist of a set

of kernels, the "Parallel Kernels", and a simulated application benchmark.

Together they mimic the computation and data movement characteristics of

large scale computational fluid dynamics (CFD) applications.

The principal distinguishing feature of these benchmarks is their "pencil

and paper" specification -- all details of these benchmarks are specified only

algorithmicaJly. In this way many of the difficulties associated with conven-

tional benchmarklng approaches on highly parallel systems are avoided.





Chapter 1

GENERAL REMARKS

by D. Bailey 1, D. Browning 3, R. Carter 3, and H. Simon s

1.1 Introduction

The Numerical Aerodynamic Simulation (NAS) Program located at NASA

Ames Research Center is a large scale effort whose goal is to advance the

state of computational aerodynamics. Specifically, NAS desires (see [3], page

3) "to provide the Nation's aerospace research and development community

by the year 2000 a high-performance, operational computing system capable

of simulating an entire aerospace vehicle system within a computing time

of one to several hours." The successful solution of this "Grand Challenge"

problem will require the development of computer systems which can perform

the required complex scientific computations at a sustained rate nearly one

thousand times greater than current supercomputers can now achieve. The

architecture of computer systems able to achieve this level of performance will

likely be dissimilar to the shared memory multiprocessing supercomputers of

today. While no consensus exists on what such an architecture will resem-

ble, it is likely that the architecture will at minimum require thousands of

processors computing in parallel. The solution of Grand Challenge problems

will require highly parallel computer systems.

tThe author is a member of the NAS Applied Research Branch

SThe author is an employee of Computer Sciences Corporation. This work is supported
through NASA Contract NAS 2-12961.



Highly parallel systems with computing power roughly equivalent to tradi-

tional shared memory multiprocessors exist today. Unfortunately, for various

reasons, the performance evaluation of these systems on comparable types

of scientific computations is extraordinarily difficult. Little relevant data is

available for the performance of algorithms of interest to the computational

aerophysics community on many currently available parallel systems. Bench-

marking and performance evaluation of such systems has not kept pace with

advances in hardware, software and Algorithms. In particular, there is as yet

no generally accepted benchmark program or even a benckmark strategy for

these systems.

The popular "kernel" benchmarks that have been used for traditional

vector supercomputers, such as the Livermore Loops [14], the LINPACK

benchmark [9, 10] and the original NAS Kernels [7], are clearly inappropriate

for the performance evaluation of highly parallel machines. In addition to

the dubious meaning of the actual performance numbers, the computation

and memory requirements of these programs do not do justice to the vastly

increased capabilities of the new parallel machines, particularly those systems

that will be available by the rnld-1990s.

On the other hand, a full scale scientific application is similarly unsuitable.

First of all, porting a large program to a new parallel computer architecture

requires a major effort, and it is usually hard to justify a major research

task simply to obtain a benchmark number. For that reason we believe that

the otherwise very successful PERFECT Club benchmark [13] is not suitable

for parallel systems. This is demonstrated by only very sparse performance

results for parallel machines in the recent reports {16, 17, 8].

Alternatively, an application benchmark could assume the availability of

automatic software tools for transforming "dusty deck" Fortran into el]icient

parallel code on a variety of systems. However, such tools do not exist

today, and we frankly doubt that they will ever exist across a wide range
of architectures.

Some other considerations for the development of a meauing_ul bench-

mark for a highly parallel supercomputer are the following:

• Advanced parallel systems frequently require new algorithmic and soft-

ware approaches, and these new methods are often quite different from

the conventional methods implemented in Fortran code for a sequential
or vector machine.



Benchmarks must be "generic, and should not favor any particular

parallel architecture. This requirement precludes the usage of any

architecture-specific code, such as message passing code.

The correctness of results and performance figures must be easily veri-

fiable. This requirement implies that both input and output data sets

must be kept very small. It also implies that the nature of the compu-

tation and the expected results must be specified in great detail.

• The memory size and run time requirements must be easily adjustable

to accommodate new systems with increased power.

• The benchmark must be readily distributable.

In our view, the only benchmarking approach that satisfies all of these

constraints is a "paper and pencil" benchmark. The idea is to specify a set

of problems only algorithmically. Even the input data must be specified only

on paper. Naturally, the problem has to be specified in sufficient detail that

a unique solution exists, and the required output has to be brief yet detailed

enough to certify that the problem has been solved correctly. The person

or persons implementing the benchmarks on a given system are expected

to solve the various problems in the most appropriate way for the specific

system. The choice of data structures, algorithms, processor allocation and

memory usage are all (to the extent allowed by the specification) left open to

the discretion of the implementer. Some extension of Fortran-77 is required,

and reasonable limits are placed on the usage of assembly code and the like,

but otherwise programmers are free to utilize language constructs that _ve

the best performance possible on the particular system being studied.

To this end, we have devised a number of relatively simple "kernels",

which are specified completely in part 2 of this document. However, kernels

alone are insufficient to completely assess the performance potential of a

parallel machine on "real" scientific applications. The chief difficulty is that

a certain data structure may be very efficient on a certain system for one of

the isolated kernels, and yet this data structure would be inappropriate if

incorporated into a larger application. In other words, the performance of

a real computational fluid dynamics (CFD) application on a parallel system

is critically dependent on data motion between computational kernels. Thus



we consider the complete reproduction of this data movement to be of critical

importance in a benchmark.

Our benchmark set therefore consists of two major components: the par-

allel kernels and a simulated application. The simulated application bench-

mark combines several computations in s ma_uer that resembles the a_:tual

order of execution in certain important CFD application codes. This is dis-

cussed in more detail in chapter 3.

We fee] that this benchmark set successfully addresses many of the prob-

lems associated with benchmarking parallel machines. A/though we do not

claim that this set is typical of all scientific computing, it is based on the

key components of several large aeroscience applications used by scientists on

supercomputers st NASA Ames Research Center. These benchmarks will be

used by the Numerical Aerodynamic Simulation (NAS) Program to evaluate

the performance of parallel computers.

1.2 Benchmark Rules

1.2.1 Definitions

In the following, the term "processor" is defined _s a hardware unit capable

of integer and floating point computation. The "local memory" of a pro-

cessor refers to randomly sccesslble memory that can be accessed by that

processor in less than one microsecond. The term "main memory" refers

to the combined local memory of aJJ processors. This includes any memory

shared by all processors that can be accessed by each processor in less than

one microsecond. The term "mass storage" refers to non-volatile randomly

accessible storage media that can be accessed by at least one processor within

forty miKiseconds. A "processing node" is defined as a hardware unit con-

sisting of one or more processors plus their local memory, which is Iogica]]y

a single unit on the network that connects the processors.

The term "computational nodes" refers to those processing nodes pri-

ma_y devoted to high-speed floating point computation. The term "ser-

vice nodes" refers to those processing nodes primarily devoted to system

operations, including compilation, Linking and communication with external

computers over a network.



1.2.2 General Rules

Although the detailsof each parallelimplementation of thesebenchmarks will

differfor each architecture,the implementation is required to be expressed

in a superset of the Fortran 77 language. This requirement stems from the

observation that the commonly used languages by the scientificcomputing

community, and the commonly implemented parallelcomputer languages,

are based on Fortran 77. The rules proposed here provide a very general

interpretationof 'Fortran'and intend to accommodate almost allextensions

to Fortran as well as constructs which faciliatethe implementation of the

benchmark programs on a parallelmachine, and which axe currentlyin use

in the scientificcomputing community. Thus in performing the NAS Parallel

Benchmarks, the followingrules must be complied with:

• An floating point operations must be performed using 64 bit floating

point arithmetic.

• All benchmarks must be coded in Fortran-77, with certain approved
extensions.

• Any extension of Fortran-77 that is in the Fortran-90 draft dated June

1990 or later is allowed [1].

• Any extension of Fortran-77 that is in the ParaLlel Computer Fortran

(PCF) draft dated March 1990 or later is allowed [4].

• Any Fortran extension or library routine that is employed in any of

the benchmarks must be supported by the vendor and available to all
users.

• Non-Fortran subprograms or library routines may only perform certain

functions, as indicated on the next section.

• All rules apply equally to subroutine calls, Fortran extensions and com-

piler directives (i.e. special comments).

1.2.3 Allowable Fortran Extensions and Library Rou-

tines

The following Fortran extensions and library routines are also permitted:



Constructs that indicate sections of code that can be executed in par-

allel or loops that can be distributed among different computational

nodes.

• Constructs that specify the allocation and organization of data among

or within computational nodes.

• Constructs that communicate data between processing nodes.

• Constructs that communicate data between the computational nodes

and service nodes.

Constructs that rearrange data stored in multiple computational nodes,

including constructs to perform indirect addressing and array transpo-
sitions.

Constructs that synchronize the action of different computational nodes.

Constructs that initialize for a data communication or synchronization

operation that will be performed or completed later.

Constructs that perform high-speed input or output operations between

main memory and the mass storage system.

Constructs that perform any of the following array reduction opera-

tions on an array either residing within a single computational node or

distributed among multiple nodes: +, ×, MAX, MIN, AND, 011, 1011.

Constructs that combine commumcation between nodes with one of

the operations listed in the previous item.

Constructs that perform any of the following computational operations

on arrays either residing within a single computational node or dis-

tributed among multiple nodes: matrix-matrix multiplication, matrix-

vector multiplication and one-dimensional, two-dimensional or three-

dimensional fast Fourier transforms. Any such construct that is em-

ployed must be ava/lable as part of the system software and must be

callable with general array dimensions.
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1.3 Sample Codes

The intent of the NAS Parallel Benchmarks report is to completely specify

the computation to be carried out in chapters 2 and 3. However, the devel-

opers of the benchmark are aware of the difficulty of generating a complete

sets of programs from scratch from just the problem description. A signifi-

cant portion of the benchmark programs also involves the generation of input

data. Even though this report contains in principle all the necessary infor-

mation which completely describes the benchmark problems, and which is

necessary to generate benchmark programs, the availability of sample codes

will significantly shorten the development time on a parallel machine. Fur-

thermore sample computer programs will reduce the likelihood of ambiguities

as to exactly what problem is to be solved.

In order to circumvent these difficulties, and to aid the benchmarking spe-

cialist, a set of Fortran ?7 computer programs implementing each benchmark

has been written. The programs are to be considered examples of how the

problems may be solved I rather than requirements. As an aid to implemen-

tation, the programs actually solve scaled down versions of the benchmark

problems. Instructions are supplied as comments in the source code on how

to scale up the program parameters to the actual full size benchmark spec-

ification. These programs are available on request on a Macintosh floppy

disk from the Applied Research Branch, NAS Systems Division, Mail Stop

T045-I, NASA Ames Research Center, Moffett Field, CA 94035, attn: NAS
Parallel Benchmark Codes.

The floppy disk contains the program sources, ReadMe files, data files,

and reference output data for correct implementations of the benchmark

problems. These codes have been validated on a number of computer systems

ranging from conventional workstations to supercomputers.

For reference we list in table 1.1 the sample codes and the approximate

resource requirements in the table below. Memory and CPU requirements of

the sample codes are such that they can be solved easily on current generation

workstations. Note that the unit '_Mw" in tables i.I and 1.2. refers to one

million 64 bit words. Also note that performance in MFLOPS is meaningless

for the integer sort (IS) benchmark, and therefore not given. An explanation

of the entries in the problem size column can be found in the corresponding

sections describing the benchmarks.



Table 1.1:

MFLOPS for one processor of the

NAS Parallel Benchmarks Sample Codes.

Benchmark code

Embarrassingly parallel (EP)

Multigrid (MG)

Conjugate gradient (CO)

3-D FFT PDE (FT)

Integer sort (IS)
LU solver (LU)

Pentadiagonal solver (SP)

Block tridiagonal solver (BT)

Cray Y-MP)

Problem Memory

Size (Mw)

224 0.1

32 s 0.1

105 0.6

64 s 2.0

2 le 0.3

12 3 0.3

12 s 0.2

123 0.3

_me

(sec)
11.6

0.I

1.2

1.2

0.2

3.5

7.2

7.2

(Times and

MFLOPS

120

128

63

160

NA

28

24

34

1.4 Submission of Benchmark Results

It must be emphasized again that the sample codes described in the section

1.3 are not the benchmark codes, but only implementation aids. For the

actual benchmark the problems will have be scaled to larger problem sizes.

How this is done is described in detail in the corresponding sections on the

benchmarks. In table 1.2 as a summary the sizes, approximate times, and

memory requirements of the actual benchmarks are listed.

The sizes of the current benchmarks were chosen such that an imple-

mentation on current generations of supercomputers is possible. The actual

requirements at NAS are for much larger problems, with corresponding in-

cresses in memory sizes. Puture releases of the benchmark wiU specify larger

problem size.

The NAS Parallel Benchmark Group encourages submissions of bench-

mark results for the problems listed in table 1.2. Periodic publication of

the submitted results is planned. Benchmark results should be submitted

to the Applied Research Branch, NAS Systems Division, Mail Stop T045-1,

NASA Ames Research Center, Moffett Field, CA 94035, attn: NAS Parallel

Benchmark Results. A complete submission of results should include the

following:

• Detailed descriptionof the hardware and software configuration used

for the benchmark.
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Table 1.2:

MFLOPS for one processor of the
NAS Parallel Benchmarks Problem Sizes. (Times and

Benchmark code

Embarra_singly parallel(EP)

Multigrid (MG)

Conjugate gradient (CG)

3-D FFT PDE (FT)

Integer sort (IS)

LU solver (LU)

Pentadiagonal solver (SP)

Block tridiagonal solver (BT)

Cray Y-MP)
Problem

Size

2 28

2568

2 • i0 e

256 × 256 × 128

22s

6@

6@

6@

Memory Time MFLOPS

(Mw) (sec)

1 151 147

57 54 154

12 22 70

59 39 192

26 21 NA

8 344 189

6 806 175

6 923 192

• Description of the implementation, algorithmic techniques etc.

• Listingof the benchmark codes.

• Output listingsfrom the benchmarks.



Chapter 2

THE KERNEL

BENCHMARKS

by D. Bailey 1, E. Barszcz I, L. Dagum s, P. Frederickson 4, R. Schreiber 4,
and H. Simon s

2.1 Overview

After an evaluation of a number of large scale CFD and computational aero-

sciences applications on the NAS supercomputers at NASA Ames, a number

of kernels were selected for the benc.hmark. These were supplemented by

some other kernels which axe intended to test specific features of parallel

machines. The following benchmark set was then assembled:

EP: An "embarrassingly parallel" kernel. It provides an estimate of the

upper achievable limits for floating point performance, i.e. the perfor-

mance without significant interprocessor communication.

MG: A simplified multigrid kernel. It requires highly structured long dis-

tance communication and tests both short and long distance data com-
munication.

IThe "authoris a member of the NAS Applied Research Branch

SThe author is an employee of Computer Sciences Corporation. This work is supported
through NASA Contract NAS 2-12961.

4The author is with RIACS. This work is supported by NAS Systems Division through
Cooperative Agreement Number NCC 2-387.
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CG: A conjugate gradient method is used to compute an approximation to

the smallest eigenvalue of a large, sparse, symmetric positive definite

matrix. This kernel is typical of unstructured grid computations in that

it tests irreg_dar long distance communication, employing unstructured

matrix vector multiplication.

FT: A 3-D partial differential equation solution using FFTs. This kernel

performs the essence of many "spectral" codes. It is a rigorous test of

long-distance communication performance.

IS: A large integer sort. This kernel performs a sorting operation that is

important in "particle method" codes. It tests both integer computa-

tion speed and communication performance.

These kernels involve substantially larger computations than previous ker-

nel benchmarks, such as the Livermore Loops or Linpack, and therefore they

are more appropriate for the evaluation of parallel machines. The Parallel

Kernels in particular are sufficiently simple that they can be implemented

on a new system without unreasonable effort and delay. Most importantly,

as emphasized earlier, this set of benchmarks incorporates a new concept in

performance evaluation, namely that only the computational task is speci-

fied, and that the actual implementation of the kernel can be tailored to the

specific architecture of the parallel machine.

In this chapter the Parallel Kernel benchmarks are presented, and the

particular rules for allowable changes are discussed. Future reports will de-

scribe implementations and benchmarking results on a number of parallel

supercomputers.

2.2 Description of the Kernels

2.2.1 Kernel EP: An Embarrassingly Parallel Bench-

mark

by D. Bailey and P. Frederickson

Brief Statement of Problem:

Generate pairs of Gaussian random deviates according to a specific scheme

described below and tabulate the number of pairs in successive square annuli.

11



Details:
Set n = 2 =s, a = 5 Is and s - 271828183. Generate the pseudorandom

floating point values rj in the interva/ (0, 1) for 1 < j < 2n using the

scheme described in section 2.3. Then for 1 _< j < n set zj = 2r_#-I - I

and I/j - 2r2j - 1. Thus zj and yj are uniformly distributed on the interval

(-1,1).

Next set k = 0. Then beginning with j = 1, test to see if tj = zj _

If not, reject this pair and proceed to the next j. If this inequality holds,

then set k _- k + 1, Xt = zj_/(-21ogtj)/tj and Y_ = _/j_/(-21ogtj)/t#,

where log denotes the natural logarithm. Then Xs and Ys are independent

Gaussian deviates with mean zero and valance one. Approximately nw/4

pairs will be constructed in this manner. See ([12], p. 117) for ,utditional

discussion of this scheme for generating Gaussian deviates.

Finally, for 0 < I < 9 tabulate Qt as the count of the pairs (Xh, Yk) that

lie in the square annulus I _< max(lX l, IYkl)< l + 1, and output the ten Qz
counts.

Verification Test:

Each of the ten Qt counts must agree exactly with reference values. For

this value of n, the reference counts are as follows:

1 Qz
0 98257395

1 93827014

2 17611549

3 1110028

4 26536

5 245

6 0

7 0

8 0

9 0

Operations to be Timed:

All operations described above, including tabulation and output.

Computational Cost:

Approximately n(45 + 127r)floatingpoint operations. For this value of

12



rt, this is 2.22 x 101° floating point operations. This count is based on 19

floating point operations for each pseudorandom number, 12 for each square

root and 25 for each logarithm evaluation.

Memory Requirement:

Minimal -- storage is required only for the uniform pseudorandom num-

bers generated in a single batch.

Other Features:

• This problem is typical of many Monte-Carlo simulation applications.

• The only requirement for communication is the combination of the 10

sums from various processors at the end.

• Separate sections of the uniform pseudorandom numbers can be inde-

pendently computed on separate processors. See section 2.3 for details.

• The smallest distance between a floating-point value and a nearby in-

teger among the rj, Xk and Yh values is 3.2 x 10 -11, which is weU

above the achievable accuracy using 64 bit floating arithmetic on ex-

isting computer systems. Thus if a truncation discrepancy occurs, it

implies a problem with the system hardware or software.

2.2.2 Kernel MG: A Simple 3D Multigrid Benchmark

by E. Barszcz and P. Frederickson

Brief Statement of Problem:

Four iterations of the V-cycle multigrid algorithm described below are

used to obtain an approximate solution u to the discrete Poisson problem

_2U --" t)

on a 256 x 256 x 256 grid with periodic boundary conditions.

Details:

Set v --0 except at the twenty points listedin table 2.1. where v --±1.

(These points were determined as the locationsof the ten largest and ten

smallest pseudorandom numbers generated as in Kernel FT.)

13



vid, k

Table _,_;

(id,k)
-1.0 211,154, 98 102,138,112 101,156, 59 17,205, 32 92, 63,205

199, 7,203 250,170,157 82,184,255 154,162, 36 223, 42,240

-t-1.0 57,120,167 5,118,175 176,246,164 45,194,234 212, 7,248

115,123,207 202, 83,209 203, 18,198 243,172, 14 54,209, 40

Begin the iterative solution with u = 0. Each of the four iterations

consists of the following two steps, in which k = 8 = log_(256):

(evaluate residual)

u = u + Mkr (apply correction)

Here M k denotes the V-cycle multigrid operator, defined in table 2.2. In this

zk = Mkrk

if k>l

else

Table 2.2:

rk-1 = P rh (restrict residual)

zk-1 = Mh-lrk_l (recursive solve)

Zk = q Zk-- 1 (prolongate)

rh = rk - A zk (evaluate residual)

zk = zk + S rh (apply smoother)

Zl -- S r I . (apply smoother)

definition A denotes the trilinear finite dement discretization of the Laplacian

V 2 normalized as indicated in table 2.3, where the coefficients of P, Q, and
S are also listed.

In this table co denotes the central coefficient of the 27-point operator,

when these coefficients are arranged as a 3 × 3 × 3 cube. Thus co is the

coefficient that mu.ltiplies the value at the gridpoint (i_j,k), while cl multiplies

the six values at grid points which differ by one in exactly one index, c_

multiplies the next closest twelve values, those that differ by one in exactly

two indices, and ca multiplies the eight values located at grid points that

14



C

A

P

Q
S

Table 2 _:

CO Cl C2 C3

-8.0/3.0 0.0 1.0/6.0 1.0/12.0

1.0/2.0 1.0/4.0 1.0/8.0 1.0/16.0

1.0 1.0/2.0 1.0/4.0 1.0/8.0

-3.0/8.0 +1.0/32.0 - 1.0/64.0 0.0

differ by one in all three indices. The restriction operator P given in this

table is the trilinear projection operator of finite element theory, normMized

so that the coefficients of all operators are independent of level, and is half the

transpose of the trilinear interpolation operator Q. The smoothing operator
S specified in this table is chosen to work well with A.

Verification Test:

Evaluate the residual after four iterations of the V-cycle multigrid algo-

rithm, and verify that its L2 norm

I1=t1 = [ ( ,',,j,k)/2563]1/2

i,j,k

agrees with the reference vMue

0.2433365309 x 10-05

within an absolute tolerance of 10 -14 .

Timing:

Start the clock before evaluating the residual for the first time, and _fter

initializing u and v. Stop the clock after evaluating the norm of the final

residual, but before displaying or printing its value.

Computational Cost:

Approximately 6 x l0gfloatingpoint operations and 60 Mwords ofmemory

axe required in the most straightforward implementation. The operation

count can be reduced by a factorof two at the costof greatermemory usage.

15



2.2.3 Kernel CG: Solving an Unstructured Sparse Lin-

ear System by the Conjugate Gradient Method

by R. Schreiber and H. Simon

Brief Statement of Problem:

In this benchmark, the power method is used to find an estimate of the
smallest eigenvMue of a symmetric positive definite spaxse matrix with a
random pattern of nonzeros.

Details:

A is a symmetric, positive definite, sparse matrix generated by the pro-
gram described below. The matrix is of order 14,000 and has 1,853,104
nonzero elements. In the foUowing, A is the spa_e matrix, lower case Ro-

man letters axe vectors, zj is the jth component of z, and lower case Greek
letters axe scahxs. We denote by I1_11the Euclidean norm of a vector z,

•/x'-x4.ooe 2 All quantities ere reed.[]X]] "-- V _..di--1 Zi.

The power method is to be implemented as follows:

z = [1,1,...,i];
(2 = O;
(1 "-- O;

= O;
it = O;
outer iteration:
do 15 times

it _ it + 1

Solve the system Az = z;

(, =(1;
(1 =(;
( = max_ Izjl;
z = _-Xz;

Apply Aitken extrapolation to the last three iterates _, _1,

and G to produce an improved approximation ('

with the following formula
(¢-C_)3

¢' = ( - C-2C_+C,

16



Print it, ¢', and [IrJ[, the Euclidean norm of the last CG

residual vector;
od

The values of _ and _' axe increasingly accurate approximations to the largest

eigenvalue of A -1, which is the reciprocal of the smallest eigenvalue of A. By

using the formula of the above algorithm, AJtken extrapolation of a linearly

convergent sequence {_,_ } produces a more rapidly converging sequence {_'}.

The solution z to the lineax system of equations Az = z is to be approx-

imated using the conjugate gradient (CG) method. This method is to be
implemented as follows:

z=O;

r--z;

p -- rTr;

p=r;
do 25 times

q=Ap;

a = p/(p_q);

z = z+ap;

Po = p;

r = r - aq;

p = rTr;

= p/po;
p = r+_p;
od

Verification Test:

The program should print, at every outer iteration of the the power

method, the iteration number it, the value of _', and the Euclidean norm

[]r[] of the residual vector at the last CG iteration (the vector r in the dis-

cussion of CG above).

The final value of _' printed by the program must agree with the ref-

erence va_ue 0.101221137511 within a tolerance of 1.0 × 10 -l°, i.e. [_' -

0.101221137511 [ < 1.0 × 10 -l°.

17



Timing:

The reported time must be the time required to compute all 15 iterations

and print the results, after the matrix is generated and downloaded into the

parallel machine, and after the initialization of the starting vector z.

It is permissible initially to reorganize the sparse matrix data structure

(e.row, acol, aelt) which is produced by the matrix generation routine, to

a data structure better suitable for the target machine. The original or the

reorganized sparse matrix data structure can then be subsequently used in

the conjugate gradient interation. Time spent in the initial reorganization of
the data structure will not be counted towards the benchmark time.

It is also permissible to use several different data structures for the matrix

A, keep multiple copies of the matrix A, or to write A to mass storage, and

read it back in. However, the time for any data movements, which take place

within the power method iterations (outer iteration) or within the conjugate

gradient iterations (inner iteration), must be included in the reported time.

Computational Cost:

Generating the matrix requires 6.2 seconds on one processor of a Cray

Y-MP, but as mentioned above this is not counted as part of the kernel

for timing purposes. Approximately 9.1 × 109 floating point operations are

required for the timed portion of the test.

Memory Requirement:

The storage requirement for the timed portion of this kernel is about 2

Mwords of 64 bit words of memory. The sparse matrix generation program

requires additional workspace for about 6 million integer words.

Other Features:

The input sparse matrix A is generated by a Fortran 77 subroutine called

makea, which is provided on the sample code disk described in section 1.3. In

this program, the random number generator is initialized with a - 513 and

s - 314159265. Then the subroutine makea is caJ]ed to generate the matrix

A. This program may not be changed.

In routine makea the matrix A is represented as follows:

N (INTEGER) -- the number of rows and columns

NZ (INTEGER) -- the number of nonzeros

18



A (ItEAL*8) w array of NZ nonzeros

IA (INTEGER) w array of NZ row indices.

for alll<K<NZ.
-- m

Element A(K) is in row IA(K)

JA (INTEGER) -- array of N+I pointers to the beginnings of columns. Col-

nmn J of the matrix is stored in positions JA(J) through JA(J+I)-I of

A and IA. JA(N+I) contains NZ+I.

The code generates the matrix as the weighted sum of N outer products

of random sparse vectors z:

N

A - _ w_zz T,
i----1

where the weights w_ are a geometric sequence with wl = 1 and ratio chosen

so that wN = 0.1 . The vectors z are chosen to have a few randomly placed

nonzeros, each of which a sample from the uniform distribution on (0, 1).

Furthermore, the i ts element of z_ is set to 1/2 to insure that A cannot be

structurally singular. Finally, 0.1 is added to the diagonal of A. This results

in a matrix whose condition number (the ratio of its largest eigenvalue to

its smallest) is roughly 10. The number of randomly chosen elements of z is

taken to be 11 ; the final number of nonzeros in A is 1,853,104 .

The data structures used are these. First, a list of triples (arow, a¢ol,

aslt) is constructed. Each of these represents an element in row i - arow,

column j = acol with value a_j = aelt. When the a.row and acol entries of

two of these triples coincide, then the values in their aelt fields are added

together in creating alj. The process of assembling the matrix data structures

from the llst of triples, including the process of adding coincident entries, is

done by the subroutine sparso, which is called by makea and also provided.

For examples and more details on this sparse data structure consult section

2.7 of the book by Duff, Erisman, and Reid [11].

2.2.4 Kernel FT: A 3-D FFT PDE Benchmark

by D. Bailey and P. Frederickson

Brief Statement of Problem:
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Numerically solve a certain partial differential equation (PDE) using for-
ward and inverse FFTs.

Details:

Consider the PDE

at
= aV%(=,t)

where z is a position in 3-dimensional space. When a Fourier trausform is

applied to each side, this equation becomes

-

where v(z, t) is the Fourier transform of u(z, t). This has the solution

=

Now consider the discrete version of the original PDE. Following the

above, it can be solved by computing the forward 3-D discrete Fourier trans-

form (DFT) of the original state array _(z,0), multiplying the results by

certain exponentials, and then performing an inverse 3-D DFT. The forward

DFT and inverse DFT of the r_l x r_2 x r_s array u are defined respectively as

F,..,,(,,)=

=

ns-1 _-I nt-1

I=0 h=0 j=O

_tlnln3 1:0 k:O j=O

The specific problem to be solved in this benchmark is as follows. Set

nl = 256, n2 = 256, and r_s = 128. Generate 2ninths 64-bit pseudorandom

floating point values using the pseudorandom number generator in section

2.3, starting with the initial seed 314159265. Then fill the complex array

U_.j,s, 0 < { < nl, 0 _< j < n2, 0 <_ k < ns, with this data, where the

first dimension varies most rapidly as in the ordering of a 3-D Fortran array.

A single complex number entry of U consists of two consecutive pseudoran-

domly generated results. Compute the forward 3-D DFT of U, using a 3-D
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fast Fourier transform (FFT) routine, and call the result V. Set a = 10 -6

and set t = 1. Then compute

where _ is defined as i for 0 _< i < nl/2 and i - nl for r_1/2 _ i < nl.

The indices 3 and k are similarly defined with n2 and ns. Then compute an

inverse 3-D DFT on W, using a 3-D FFT routine, and call the result the

array X. Finally, compute the complex checksum x-,102s _- where r iZ-,I:O .,q.r,a,t --

(mod nl), J = 3i (rood n,) and t = 5i (rood ns). After the checksum for

this t has been output, increment t by one. Then repeat the above process,

from the computation of W through the incrementing of t, until the step

= N has been completed. In this benchmark, N = 6. The 9" array and the

array of exponential terms for t = 1 need only be computed once. Note that

the array of exponential terms for t > 1 can be obtained as the t-th power of
the array for t = 1.

Any algorithm may be used for the computation of the 3-D FFTs men-

tioned above. One algorithm is as follows. Assume that the data in the

input nl x n_ x ns complex array A is organized so that for each j and k, all

elements of the complex vector (A/d,i, , 0 _< i < nl) are contained within a

single processing node. First perform an hi-point 1-D FFT on each of these

n2n3 complex vectors. Then transpose the resulting array into an n2 x ns x nl

complex array B. Next, perform an n2-point 1-D FFT on each of the ash1

fgrst-dimension complex vectors of B. Again note that each of the 1-D FFTs

can be performed locally within a single node. Then transpose the resulting

array into an ns x nl x n2 complex array C. Finally, perform an ha-point

1-D FFT on each of the nln2 tirst-dimension complex vectors of C. Then

transpose the resulting array into an n_ x n2 x ns complex array D. This
array D is the final 3-D FFT result.

Algorithms for performing an individual 1-1) complex-to-complex FFT

are wall known and wiU not be presented here. Readers are referred to the

references [5, 6, 15, 18, 19] for details. It might be noted that some of these

FFTs are "unordered" FFTs, i.e. the results are not in the correct order

but instead are scrambled by a bit-reversal permutation. Such FFTs may

be employed if desired, but it should be noted that in this case the ordering

of the exponential factors in the definition of Wi,j.h above must be similarly

scrambled in order to obtain the correct results. Also, the final result array
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X may be scrambled, in which case the checksum calculation will have to be

changed accordingly.

It should be noted that individual 1-D FFTs, array transpositions, and

even entire 3-D FFT operations may be performed using vendor-supplied
Library routines. See sections 1.2.2 and 1.2.3 for details.

Operations to be Timed:

All of the above operations, including the checksum calculations, must
be timed.

Verification Test:

The N complex checksums must agree with reference values to within one

part in 101_. For the parameter sizes specified above, the reference values axe
as follows:

t Real Part Ima_nary Part

1 504.6735008193 511.4047905510

2 505.9412319734 509.8809666433

3 506.9376896287 509.8144042213

4 507.7892868474 510.1336130759

5 508.5233095391 510.4914655194

6 509.1487099959 510.7917842803

Computational Cost:

Approximately n[58 + 6N + 5(N + 1)log 2 n] floating point operations,

where n = nln2ns. For the parameter sizes specified above, this is 7.54 × 10 e

floating point operations. This count is based on 19 floating point operations

for each pseudorandom number, 5m log 2 m for each m-point complex FFT

and 20 for each exponential function evaluation.

Memory Requirement:

Approximately 7n words (64 bit), where n = nxn=ns. This assumes that

a scratch array of the same size as the 3-D data array is required for the 3-D

FFTs. For the parameter sizes specified above, this is 5.87 × 107 words.

Other Features:

• 3-D FFTs are a key part of certain CFD applications, notably large
eddy turbulence simulations.
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, The 3-D FFT stepsrequireconsiderablecommunicationfor operations
suchasarray transpositions.

2.2.5 Kernel IS: Parallel Sort Over Small Integers

by L. Dagum

Brief Statement of Problem:

Sort N keys in paxallel. The keys are generated by the sequential key

generation algorithm given below and initially must be uniformly distributed

in memory. The initial distribution of the keys can have a great impact on

the performance of this benchmark, and the required distribution is discussed
in detail below.

Definitions:

A sequence of keys, {K_ I i : 0,1,..., N- 1}, will be said to be sorted

if it is arranged in non-descending order, i.e. Ki _ Ki+l _< Ki+2 .... The rank

of a particular key in a sequence is the index value i that the key would have if

the sequence of keys were sorted. Ranking, then, is the process of arriving at

a rank for all the keys in a sequence. Sorting is the process of permuting the

the keys in a sequence to produce a sorted sequence. If an initially unsorted

sequence, Ko, K1,...,KN_I has ranks r(O),r(1),...,r(N- 1), the sequence

becomes sorted when it is rearranged in the order K,(0), K,(1),..., K,(N-1).

Sorting is said to be stable if equal keys retain their original relative order.

In other words, a sort is stable only if r(i) < r(j) whenever K,(_) = K,(j) and
i < j. Stable sorting is not required for this benchmark.

Memory Mapping:

The benchmark requires ranking an unsorted sequence of N keys. The

initial sequence of keys will be generated in a_n unambiguous sequential man-

ner described below. This sequence must be mapped into the memory of

the parallel processor in one of the following ways depending on the type

of memory system. In all cases, one key will map to one word of memory.

Word size must be no less than 32 bits. Once the keys are loaded onto the

memory system, they are not to be moved or modified except as required by
the procedure described in the Procedure subsection.

Shared Global Memory All N keys initially must be stored in a contigu-
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ousaddressspace. If A_ is used to denote the address of the i_ word

of memory, then the address space must be [A_, A_+N-I]. The sequence

of keys,/(0,/{i,..., KN-I, initially must map to this address space as

A_+j ,--- MEM(Kj) for j = 0,1,...,N- 1 (2.1)

where MEM(Kj) refers to the address of Kj.

Distributed Memory In a distributed memory system with p distinct mem-

ory units, each memory unit initially must store N_ keys in a contiguous

address space, where

N v = NIp. (2.2)

If A_ is used to denote the address of the i _ word in a memory unit,

and if Pj is used to denote the j,h memory unit, then Pj N A_ will de-

note the address of the i _h word in the jth memory unit. Some initial

addressing (or "ordering") of memory units must be assumed and ad-

hered to throughout the benchmark. Note that the addressing of the

memory units is left completely arbitrary. If N is not evenly divisible

by p, then memory units {Pj I J = 0,1,...,p- 2} will store Np keys,

and memory unit Pp-1 will store N_ keys, where now

Np = [N/p + 0.5J (2.3)

N_ = N- (p- 1)Np. (2.4)

In some cases (in particular if p is large) this mapping may result in

a poor initial load balance with N_ >> Np. In such cases it may

be desirable to use f memory units to store the keys, where f < p.

This is allowed, however the storage of the keys still must follow either

equation 2.2 or equations 2.3-2.4 with f replacing p. In the following

we will assume N is evenly divisible by p. The address space in an

individual memory unit must be [A_,A_+jv,-1]. If memory units are

individually hierarchical, then N v keys must be stored in a contiguous

address space belonging to a single memory hierarchy and A_ then

denotes the address of the i *h word in that hierarchy. The keys cannot

be distributed amongst different memory hierarchies until after timing
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begins. The sequenceof keys,/to, KI,... ,KN-1 , initially must map

to this distributed memory as

Pk N A_+j _ MEM(KkN,+_) for

and

j = 0,1,...,Np- 1

k = 0,1,...,p- 1 (2.5)

where MEM(KhN,+j) refers to the address of Kk,%+j. If N is not

evenly divisible by p, then the mapping given above must be modified

for the case where k = p - 1 as

Pn-1NA_+_ _ MEM(Ko,_I)N,+j ) for j = 0,1,...,N_- 1. (2.6)

Hierarchical Memory All N keys initially must be stored in an address

space belonging to a single memory hierarchy which will here be referred

to as the main memory. Note that any memory in the hierarchy which

can store all N keys may be used for the initial storage of the keys,

and the use of the term "main memory" in the description of this

benchmark should not be confused with the more general definition of

this term in section 1.2.1. The keys cannot be distributed amongst

different memory hierarchies until after timing begins. The mapping

of the keys to the main memory must follow one of either the shared

global memory or the distributed memory mappings described above.

The benchmark requires computing the rank of each key in the sequence.

The mappings described above define the initial ordering of the keys. For

shared global and hierarchical memory systems, the same mapping must be

applied to determine the correct ranking. For the case of a distributed mem-

ory system, it is permissible for the mapping of keys to memory at the end of

the ranking to differ from the initial mapping only in the following manner:

the number of keys mapped to a memory unit at the end of the ranking may

differ from the initial value, N n. It is expected, in a distributed memory

machine, that good load balancing of the problem will require changing the

initial mapping of the keys and for this reason a different mapping may be

used at the end of the ranking. If Nph is the number of keys in memory
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unit Ph at the end of the ranking, then the mapping which must be used to

determine the correct ranking is given by

Pk N A_+_ _ MEM(r(kN,,, + j)) for j = 0,1,..., Nph - 1

and = 0,1,...,p- 1

where r(kNp, + j) refers to the rank of key KkNT,+j. Note, however, this

does not imply that the keys, once loaded into memory, may be moved.

Copies of the keys may be made and moved, but the original sequence must

remain intact such that each time the ranking process is repeated (Step 4

of the Procedure) the original sequence of keys exists (except for the two

modifications of Step 4a) and the same algorithm for ranking is appUed.

Specifically, knowledge obtainable from the communications pattern carried

out in the first ranking cannot be used to speed up subsequent rankings and

each iteration of Step 4 should be completely independent of the previous
iteration.

Key Generation Algorithm:

The algorithm for generating the keys makes use of the pseudorandom

number generator described in section 2.3. The keys will be in the range

[0, B,,_). Let rl be a random fraction uniformly distributed in the range

[0, 1], and let Ki be the _th key. The value of K_ is determined as

K_ _ LB_u(r4,+o+r4,+l+r4,÷2+r4,+s)/4J for { = 0,1,...,N-1. (2.8)

Note that K_ must be an integer and L'Jindicatestruncati_ou.Four consecu-

tivepseudorandom numbers from pseudorandom number generator must be

used for generating each key. All operations before the truncation must be

performed in 64-bit double precision. The random number generator must

be initializedwith 8 = 314159265 as a startingseed.

Partial Verification Test:

Partial verification is conducted for each ranking performed. Partial ver-

ification consists of comparing a particular subset of ranks with the reference

values. The subset of ranks and the reference values are given in table 2.5 of

the Specifications subsection. Note that the subset of ranks is selected to be
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invaxiant to the rmlking algorithm (recall that stability is not required in the

benchmark). This is accomplished by selecting for verification only the ranks

of unique keys. If a key is unique in the sequence (i.e. there is no other equal

key), then it will have a unique rank despite an unstable ranking algorithm.

The memory mapping described in the Memory Mapping subsection must

be applied.

Full Verification Test:

Full verification is conducted after the last ranking is performed.

verification requires the following:

Pun

1. Rearrange the sequence of keys, {Ki [ i = 0, 1,...,N - 1}, in the

order {Kj [ j = r(0),r(1),...,r(N-1)}, wherer(0),r(1),...,r(N-

1) is the last computed sequence of ranks.

2. For every K_ from i = 0... N - 2 test that K_ < Ki+l.

If the result of this test is true, then the keys are in sorted order. The memory

mapping described in the Memory Mapping subsection must be applied.

Procedure:

1. In a scalar sequential manner and using the key generation algorithm

described above, generate the sequence of N keys.

2. Using the appropriate memorymapping described above, load the N

keys into the memory system.

3. Begin timing.

4. Do, for i = 1 to I,_=

(a) Modify the sequence of keys by making the following two changes:

El _-- i (2.9)

K_+z,,,. *-- (B,_= - i) (2.10)

(b) Compute the rank of each key.

(c) Perform the partial verification test described above.
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5. End timing.

6. Perform full verification test described above.

Computational Cost:

On a sequential machine, integer sorting has a time complexity of O(N).

For each ranking, the sequential algorithm has 2N + B,_, arithmetic oper-

ations (integer add or subtract), and 7N + 4B, w memory references. No

floating point operations are required.

Specifications:

The specifications given in table 2.4 shall be used in the benchmark. Two

sets of values are given. The Full Scale values are the values to be used in

the actual benchmark as described in section 1.4. However, for development

purposes, the Sample Code values as described in section 1.3 may be used.

Parameter _ Scale

N

Bnto_

seed

223

21o

Sample Code

2 TM

211

314159265 314159265

I.,_ 10 10

Table 2.4: Parazaeter values to be used for benchmark.

For partial verification, the reference values given in table 2.5 are to be

used. In this table, r(j) refers to the rank of K_ and i is the iteration

of Step 4 of the Procedure. Again two sets of values are given, the Full

Scale set being for the actual benchmark and the Sample Code set being

for development purposes. It should be emphasized that the benchmark

measures the performance based on use of the Full Scale values, and the

Sample Oode values are given only as a convenience to the implementor.

Also to be supplied to the implementor is Fortran 77 source code for the

sequential implementation of the benchmark using the Sample Code values

and with partial and fuU verification tests.

28



Rank FuII Scale Sample Code

r(2112377) 104 + i 0 +i

r(662041) 17523 + i 18 + i

r(5336171) 123928 + i 346 + i

r(3642833) 8288932 - i 64917 - i

8388264 - i 65463 - ir(4250760)

Table 2.5: Values to be used for partial verification.

2.3 A Pseudorandom Number Generator for

the Parallel NAS Kernels

by D. Bailey

Suppose that n uniform pseudorsndom numbers are to be generated. Set

a = 5 la and let z0 = s be a specified initial "seed", i.e. an integer in the

range O < s < 246. Generate the integers z_ for 1 _< k _ n using the linear

congruential recursion

zh+a - azh (mod2 46)

and return rk = 2-4szk as the results. Thus 0 < rk < 1, and the rk are very

nearly uniformly distributed on the unit interwl. See ([12], beginning on p.

9) for further discussion of this type of pseuderandom number generator.

Note that any particular value zh of the sequence can be computed di-

rectly from the initial seed s by using the binary algorithm for exponentiation,

taking remainders modulo 24s after each multiplication. To be specific, let m

be the smallest integer such that 2" > k, set b = s and t = a. Then repeat

the following for i from 1 to m:

j _ k/2

b _ bt (mod2 4s)

t _ t 2 (mod246 )

k,--j

if 2j#k
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The final value of b is z_ -- a% (rood 2'e). See ([12], p. 442) for further

discussion of the binary algorithm for exponentiation.

The operation of multiplying two large integers modulo 24e can be imple-

mented using 64 bit flot_ting point arithmetic by splitting the arguments into

two words with 23 bits each. To be specific, suppose one wishes to compute

c = ab (mod 24e). Then perform the following steps, where ins denotes the

greatest integer:

al _-- int (2-2Sa)

a2 4--" a -- 223ai

bl _ ins (2-=3b)

b2 *-- b-2=Sbl

tl *-- alb2 + a2bl

t2 _ int(2-zStl)

ts _ t_-2=st_

t4 *-- 22sts + a262

t5 _ int (2-4tt4)

c _ t4-24ets

An implementation of the complete pseudorandom number generator al-

gorithm using this scheme produces the same sequence of results on any

system that satisfies the following requirements:

The input multiplier a and the initial seed s, as well as the constants

223, 2 -53, 24e and 2 -4e, can be represented exactly as 64 bit floating

point constants.

The truncation of a nonegative fi4 bit floating point value less than 224
is exact.

The addition, subtraction and multiplication of 64 bit floating point

values, where the arguments and results are nounegative whole numbers

less than 247, produce exact results.

The multiplication of a 64 bit floating point value, which is a nonneg-

ative whole number less than 247, by the 64 bit floating point value

2 -'_, 0 < rn < 46, produces an exact result.
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These requirements are met by virtually all scientific computers in use today.

Any system based on the IEEE-754 floating point arithmetic standard [2]

easily meets these requirements using double precision. However, it should

be noted that obtaining an exact power of two constant on some systems

requires a loop rather than merely an assignment statement with **.

Other Features:

• The period of this pseudorandom number generator is 2 _s - 1.76 × 1013,
and it passes all reasonable statistical tests.

• This calculation can he vectorized on vector computers by generating

results in batches of size equal to the hardware vector length.

By using the scheme described above for computing zh directly, the

starting seed of a particular segment of the sequence can be quickly

and independently determined. Thus numerous separate segments can

be generated on separate processors of a multiprocessor system.

Once the IEEE-754 floating point arithmetic standard gains universal

acceptance among scientific computers, the radix 24s can be safely in-

creased to 2 s2, although the scheme described above for multiplying

two such numbers must be correspondingly changed. This will increase

the period of the pseudorandom sequence by a factor of 64, to approx-

imately 1.13 × 10 is.
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Chapter 3

A METHODOLOGY FOR BENCHMARKING SOME CFD KERNELS
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Abstract

A collection of iterative PDE solvers embedded in a pseudo application program is proposed for

the performance evaluation of CFD codes on highly parallel processors. The pseudo application

program is stripped of complexities associated with real CFD application programs, thereby en-

abling a simpler description of the algorithms. However, it is capable of reproducing the essential

computation and data motion characteristics of large scale, state of the art CFD codes. In this

chapter, we present a detailed description of the pseudo application program concept. Preceding

chapters address our basic approach towards the performance evaluation of parallel supercomputers

targeted for use in numerical aerodynamic simulation.

Keywords: supercomputers, parallel computers, computational fluid dynamics, benchmark-

ing, performance evaluation.

1. INTRODUCTION

Computational Fluid Dynamics (CFD) is one of the fields in the area of scientific computing

that has driven the development of modern vector supercomputers. Availability of these high

performance computers has led to impressive advancements in the state of the art of CFD, both in

terms of the physical complexity of the simulated problems and the development of computational

algorithms capable of extracting high levels of sustained performance. However, to carry out the

computational simulations of future importance to the aerospace community, CFD must be able

and ready to exploit potential performance and cost/performance gains possible through the use

of highly parallel processing technologies. Use of parallel supercomputers appears to be one of

the most promising avenues for realizing large complex physical simulations within realistic time

and cost constraints.Although many of the currentCFD applicationprograms are amenable to

a high degree of parallelcomputation, performance data on such codes for the currentgeneration

of parallelcomputers often has been lessthan remarkable. This isespeciallytrue forthe classof

CFD algorithmsinvolvingglobaldata dependencies,commonly referredto as the implicitmethods.

Often the bottleneckisdata motion, due to high latenciesand inadequate bandwidth.

Itisa common practiceamong computer hardware designersto use the dense linearequation

solutionsubroutinein the LINPACK to representthe scientificcomputing workload. Unfortunately,
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thecomputational structuresinmost CFD algorithmsbear littleresemblanceto thisLINPACK rou-

tine,both in terms of itsparallelizationstrategyas wellas floatingpoint and memory reference

features.Most CFD applicationcodes are characterizedby theiruse of eitherregularor irregular

sparsedata structuresand associatedalgorithms.One of the reasonsforthisstateof a_alrsisthe

near absence of communication between computer scientistsengaged in the designof high perfor-

mance parallelcomputers and the computational scientistsinvolved in the development of CFD

applications.In orderto have a beneficialeffecton the end product,such exchange of information

shouldoccur during the earlystagesofthe designprocess.Itappears thatone of the contributing

factorsforthislackofeffectivecommunication isthe complexityand confidentialityassociatedwith

the state-of-the-artCFD applicationcodes. One way to help the designprocessisto provide the

computer scientistswith syntheticCFD applicationprograms, which lackthe complexity of a real

application,but at the same time retainallthe essentialcomputational structures.Such synthetic

applicationcodes can be accompanied by detailedand simplerdescriptionsof the algorithmsin-

volved.In return,theperformance data on such syntheticapplicationcodes can be used toevaluate

differentparallelsupercomputer systems at the procurement stageby the CFD community.

Computational FluidDynamics involvesthe numericalsolutionofa system ofnonlinearpartial

differentialequationsin two or threespatialdimensions,with or without time dependence. The

governing partialdifferentialequations,referredto as the Navier-Stokesequations,representthe

laws of conservationof mass, momentum and energy appliedto a fluidmedium in motion. These

equations,when supplemented by appropriateboundary and initialconditionsdescribea particular

physicalproblem. To obtaina system ofequationsamenable to solutionon a computer requiresthe

discretization of the differential equations through the use of finite difference, finite volume, finite

element or spectral methods. The inherent nonlinearities of the governing equations necessitate the

use of iterative solution techniques. Over the past years, a variety of efficient numerical algorithms

have been developed, all requiring many floating point operations and large amounts of computer

memory to achieve a solution with a desired level of accuracy.

In current CFD applications, there are two types of computational meshes used for the spa-

tial discretization process: structured and unstructured. Structured meshes are characterized by

a consistent, logical ordering of mesh points, whose connectivity is associated with a rectilinear

coordinate system. Computationally, structured meshws give rise to regularly strided memory ref-

erence characteristics. In contrast, unstructured meshes offer greater freedom in terms of mesh point

distribution, but require the generation and storage of random connectivity information. Computa-

tionaliy, this results in indirect memory addressing with random strides, with its attendant increase

in memory bandwidth requirements. The synthetic application codes currently under consideration

are restricted to the case of structured meshes.

The numerical solution algorithms used in CFD codes can be broadly categorized as either
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explicit or implicit, based on the procedure used for the time domain integration. Among the

advantages of the explicit schemes are the high degree of easily exploitable parallelism and the

localized spatial data dependencies. These properties have resulted in highly efficient implemen-

tations of explicit CFD algorithms on a variety of current generation highly parallel processors.

However, the explicit schemes suffer from stringent numerical stability bounds and as a result are

not optimal for problems that require fine mesh spacing for numerical resolution. In contrast, im-

plicit schemes have less stringent stability bounds and are suitable for problems involving highly

stretched meshes. However, their parallel implementation is more difficult and involve local as well

as global spatial data dependencies. In addition, some of the implicit algorithms possess limited

degrees of exploitable parallelism. At present, we restrict our synthetic applications to three differ-

ent representative implicit schemes found in a wide spectrum of production CFD codes in use at

the NASA Ames Research center.

In the remaining sections of this chapter, we describe the development of a collection of synthetic

application programs. First we discuss the rationale behind this approach followed by a complete

description of three such synthetic applications. We also outline the problem setup along with the

associated verification tests, when they axe used to benchmark highly parallel systems.

2. RATIONALE

In the past, vector supercomputer performance was evaluated through the use of suites of

kernels chosen to characterize generic computational structules present at a site's workload. For

example, NAS Kernels ([1]) were selected to characterize the computational workloads inherent in a

majority of algorithms used by the CFD community at the NASA Ames Research Center. However,

for highly parallel computer systems, this approach is inadequate, for reasons outlined below.

The first stage of the pseudo application development process was the analysis of a variety of

implicit CFD codes and the identification of a set of generic computational structures that repre-

sented a range of computational tasks embedded in them. As a result, the following computational

kernels were selected:

a) Solution of multiple, independent systems of non diagonally-dominant .... ock tridiagonal equa-

tions with a (5 × 5) block size.

b) Solution of multiple, independent systems of non diagonally-dominant, scalar pentadiagonal

equations.

c) Regular-sparse, block (5 x 5) matrix-vector multiplication.

d) Regular-sparse,block (5 x 5) lower and upper triangularsystem solution.

These kernelsconstitutea majority of the computationally-intensive,main buildingblocksof

the CFD programs designed for the numerical solutionof three-dimensional(3D), Euler/Navier-
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Stokes equations using flnJte-volume/fiuite-difference discretization on structured grids. Kernels (a)

and (b) are representative of the computations associated with the implicit operator in versions

of the ARC3D code ([2]). These kernels involve global data dependencies. Although they are

_imilar in many respects, there is a fundamental difference with regard to the communication-to-

computation ratio. Kernel (c) typifies the computation of the explicit part of almost all CFD

algorithms for structured grids. Here all data dependencies are local, with either nearest neighbor

or at most next-to-nearest neighbor type dependencies. Kernel (d) represents the computations

associated with the implicit operator of a newer class of implicit CFD algorithms, typified by the

code INS3D-LU ([3]). This kernel may contain only a limited degree of parallelism, relative to the

other kernels.

In terms of their parallel implementation, these kernels represent varying characteristics with

regard to the following aspects, which are often related:

1) Available degree of parallelism.

2) Level of parallelism and granularity.

3) Data space partitioning strategies.

4) Global vs. local data dependencies.

5) Inter-processor and in-processor data motion requirements.

6) Ratio of communication-to-computation.

Previous research efforts in adapting algorithms in a variety of flow solvers to current generation

of highly parallel processors have indicated that the overall performance of many CFD codes is

critically dependent on the latency and bandwidth of both the in-processor and inter-processor

data motion. Therefore, it is important for the integrity of the benchmarking process to faithfully

reproduce a majority of the data motions encountered during the execution of applications in which

these kernels are embedded. Also, the nature and amount of data motion is dependent on the

kernel algorithms along with the associated data structures and the interaction of these kernels

among themselves as well as with the remainder of the application that is outside their scope.

To obtain realistic performance data, specification of both the incoming and outgoing data

structures of the kernels should mimic those occuring in an application program. The incoming data

structure is dependent on the section of the code where the data is generated, not on the kernel.

The optimum data structure for the kernel may turn out to be sub-optimal for the code segments

where the data is generated and vice-versa. Similar considerations also apply to the outgoing data

structure. Allowing the freedom to choose optimal incoming and outgoing data structures for the

kernel as a basis for evaluating its performance is liable to produce results that are not applicable

to a complete application code. The overall performance needs to reflect the cost of data motion

that occur between kernels.
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In order to reproduce most of the data motions encountered in the execution of these kernels

in a typical CFD application, we propose embedding them in a pseudo application code. It is

designed for the numerical solution of a synthetic system of non-linear Partial Differential Equations

(PDE's), using iterative techniques similar to those found in CFD applications of interest to the

NASA Ames Research Center. However, it contains none of the pre- and post-processing required

by the full CFD applications, or the interactions of the processors and the I/O subsystem. This can

be regarded as a stripped-down version of a CFD application. It retains the basic kernels that are

the principal building blocks of the application and admits a majority of the interactions required

between these basic routines. Also, the stripped-down version does not represent a fully configured

CFD application in terms of system memory requirements. This fact has the potential for creating

data partitioning strategies during the parallel implementation of the synthetic problem that may

be inappopriate for the full application.

From a functionality point of view, the stripped-down version does not contain the algorithms

used to apply boundary conditions as in a real application. It is well known that often, the boundary

algorithms gives rise to load imbalances and idling of processors in highly parallel systems. Due

to relaxing of this requirement, it is likely that the overall system performance and efficiency data

obtained using the stripped-down version may be higher than that of an actual application. This

effect is somewhat mitigated by the fact that for most realistic problems, only a relatively small

time is spent dealing with boundary algorithms when compared to the time spent in dealing with

the internal mesh points. Also, most boundary algorithms involve only local data dependencies.

Among the other advantages of the stripped-down application vs. full application approach

are:

1) Allows benchmarking where real application codes are confidential.

2) Easier to manipulate and port from one system to another.

3) Since only the abstract algorithm is specified, it facilitates new implementations that are tied

closely to the architecture under consideration.

4) Allows easy addition of other existing and emerging CFD algorithms to the benchmarking

process.

5) Easily scalable to larger problem sizes.

It should be noted that this synthetic problem differs from a real CFD problem in the following

important aspects:

1) In fullCFD applicationcodes, a non-orthogonal coordinatetransformation([2])is used to

map the complex physicaldomains to the regularcomputational domains, therebyintroducing

metric coefficientsof the transformationintothe governing PDE's and boundary conditions.
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Suchtransformationsaxe absent inthe syntheticproblem, and as a resultmay have a reduced

arithmeticcomplexityand storagerequirements.

2) A blend of nonlinear,second- and fourth-differenceartificialdissipationterms ([4])isused in

most of the actualCFD codes,whose coefficientsaxe determined based on the localchanges in

pressure.In the stripped-down version,only a linear,fourthdifferenceterm isused. This re-

duces the arithmeticand communication complexityneeded to compute the added higher-order

dissipationterms. However, itshouldbe noted thatcomputation of theseartificialdissipation

terms involveonly localdata dependencies,similarto the matrix-vectormultiplicationkernel.

3) In codes where artificialdissipationisnot used,upwind differencingbased on eitherflux-vector

splitting ([5],[6]) or flux-difference splitting ([7]) or Total Variation Diminishing (TVD) schemes

([8]) is used. The absence of such differencing schemes in the stripped-down version induces

effects similar to (2) on the performance data.

4) Absence of turbulence models. Computation of terms representing some turbulence models

involve a combination of local and some long-range data dependencies. Arithmetic and com-

munication complexity associated with turbulence models are absent.

In addition, it also needs to be emphasized that the stripped-down problem is neither designed

nor is suitable for the purposes of evaluating the convergence rates and/or the applicability of various

iterative linear system solvers used in computational fluid dynamics applications. As mentioned

before, the synthetic problem differs from the real CFD applications in following important ways:

1) Absence of realistic boundary algorithms.

2) Higher than normal dissipative effects.

3) Lack of upwind differencing effects, based on either flux-vector splitting or TVD schemes.

4) Absence of geometric stiffness introduced through boundary conforming coordinate transfor-

mations and highly stretched meshes.

5) Lack of evolution of weak (i.e.,C°-) solutions found in real CFD applications, during the

iterative process.

6) Absence of turbulence modelling effects.

Some of these effects tend to suppress the predominantly hyperbolic nature exhibited by the

Navier-Stokes equations, when describing compressible flows at high Reynolds numbers.

3. MATHEMATICAL PROBLEM DEFINITION

We consider the numerical solution of the following synthetic system of five nonlinear partial

differential equations (PDE's):
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0U

01"

aZ(U) aF(U) aG(U)
+_+_

a_ an a6

+ ST(U, U_) + av(u, u_) + aw(u, u0
a_ a_ a6

+ I-I(U,U_,U.,UO, (_',_,,7,6)_ I). x D

with the boundary conditions:

B(u,u_,u.,uc) = ue(_, ¢,n,6), (*,_,n,6) a v. × av

and initial conditions:

U=U°(_,_7,6), (_,_/,6) ED for r=0,

where D E _ is a bounded domain, aD is its boundary and D, = {0 < r < T} .

Also, the solution to the system of PDE's:

(u(s)

u(2)

defined in ( D U OD ) × D_,

that form the orthogonal coordinate system in _i_, i.e.;

(3.1a)

(3.1b)

(3.1c)

U = u(3) (3.2)

u(4)

\ u(s)

is a vector function of temporal variable 7- and spatial variables (_, _7,6)

_,(') = u(")(_',_,,7,6).

The vectorfunctionsU B and U ° are given and B isthe boundary operator.E, F, G, T, V,

W and H are vectorfunctionswith fivecomponents each ofthe form:

( e(1) _.
I

e(l)

E -- e (3) (3.3)

e(4)
I
#

\ e(s) ,

and e(_) = e(_)(U) etc. are prescribed functions.
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The system given by Eq.(3. la)is in the 'normal-form', i.e., it gives explicitly the time derivatives

of all the dependent variables u (1), u(2),..., u(s). Consequently, the Cauchy data at r = 0, given by

Eq.(3.1c) permits the calculation of solution U(r, _,,7, C) for r > 0.

In the current implementation of the synthetic PDE system solver, we seek a steady-state

solution of Eq.(3.1) of the form:

:f(,),

f(2)

U* "- f(_, r/,() "- f(3) (3.4)

ft4)

f(s)/

where f(m) __f(,,0(_,,7,_)are prescribedfunctionsof the followingform:

f(2)(_,rl'_)

f(3)(_,7},_)

f(4)(_,r/,_)

f(s)(_,7,_)/

Here, the vectore isgivenby:

er=(l _ v ¢

C1,1 C1,2 ... C1,13 /

= 1C2,1 C2,2 ... C2,1a

/ • • .. "

Cs,1 Cs,2 ... Cs,la

7,¢) (3.5)

andCm,n,m= 1,2,...,5,n= 1,2,...,13 are specified constants.

The vector forcing function H = [hO), h(2), h(3), h(4), h(S)] T, where h ('n) = h(')(_, ,7, () is chosen

such that the system of PDE's, along with its boundary and initial conditions, satisfies the prescribed

exact solution, U °. This implies:

[OE(U °) OF(U*) egG(U*)
H'(_,r/,_')=-L _'_ + O-----_-'-+ Of

0W(U',U"0T(U', 0V(U',U;) +
+ O_ + 07 O_

for (_,r/,_')E D x Dr

(3.6)

The bounded spatial domain D is specified to be the interior of the unit cube [(0, 1) x (0, 1) x

(0,I)],i.e.:
D={(_,,/,():0<_< 1,0<V< 1,0<¢< 1}
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and its boundary 0D, is the surface of the unit cube given by:

aD={(_,r/,C):_=0or 1}U{(_,r/,(_):7/=0or l}U{(_,r/,(_):(_=0or I}

' The vector functions E,F,G,T,V and W of the synthetic problem are specified to be the

E _..

foUowing:

( -u (2)

_[_(_)]2/_(,) _ ¢

-[u(2)u(3)]/ u(1)

-[u(1)u(l)]l_(1)

,-[_(2)I_(')][_(')+ _],

G ___

where,

a.Iso_

; F=

_u(4)

-[d2)d4)]l_(_)

-- [U(3) 11(4)] Ill(1)

_[u(4)]21u(_)_

-[d')l_(')][_(_)+ ¢]

( --U(3)

--[U(2)U(3)]/U(1)

_[uc_)]_lu(_)_

--[U(3)U(4)]/U(1)

,-[,,(_)/_(')][.(_) + ¢]

= k_{,(_) _ o.5[([,(_)]_+ [_(_)]2+ {d')]')]}.
u(1)

T

where,

t(s) A(s) Ou (5)

+ o.5(1.- k,k_)_(
a¢

d_')(o,,c')/o_)

d_)(a,,c2)/a_) + (4.13.)k3k,(O[t,(2)l_(')]/O_)

d_)(ad3)/a,_) + k_,(a[,,c_)/_c')]/a,_) ,

d_')(a_C')/a,_)+ k_k,(a[_c')/_c')]/a,_)

((s)

[_(_)]_+ [_(_)]_+ [_(')]_ 1. a
[_(,)]2 ) + (_.)_[_(_)/d')] 2+ k,k__[_(_)Id')].
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g _,

Z_)[a_(41/o,7)+ k3k4(a[_(_)/_O)]/a_)

v(s)

where,

v (s) = d (s) Ou (5)
O77

+ 0.s(1.- k,k_)_(
[_,c,)por/ ) -}- ( L) _--=_[u(3) /u(1)]2 -k- kl]c,5-_[u(5)/u(l)].

W __, ,t_)(o_,TM/aO + k_k,(O[,_C_}l,_C'_]lO0

dC_)(OuC4)/O0+ (4./3.)_3k4(O[uC4)/uC_)]/O0

w(s)

where,

Ou (s)
w (s) = d (n)

r. O_

+ 0.5(1. _ k,k_) 0_( [u<')]' + [_'_)]' + [u(4)]' C1-,Oru(4)/u(,),_

and_,,k,,_, _,,,,_,d_'_,,_,'),d_"C_= _,Z,...,5)aregi,,encon_tatnts.

3.1 THE BOUNDARY CONDITIONS

The boundary conditions for the system of PDE's is prescribed to be of the uncoupled DirictLlet

type, and is specified to be compatible with U*, such that:

u(m) = f(m)(_,_7,_), for (r,_,r/,_') fi D_ x OD (3.7)

and m = 1,2,...,5.
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3.2. THE INITIAL CONDITIONS

The initial valuesU° in D are set to those obtained by a transfinite, tri-linear interpolation

([9]), of the boundary data given by Eq.(3.?). Let:

P_) =(1.- _) u(_)(0,W,_')+ _ u("O(1,W,(),

P(nm) --(I.- r/)u(m)(_,0,C)+ r/u("_)(_,I,C), (3.8)

P_) = (1.- C)u(m)(_c,r},0)+ C u(_)(_,r/,1)•

Then,

+ p_m)p(mlp(,n),_"( , for (_,r/,_)E D

(3.9)

4. THE NUMERICAL SCHEME

Starting from the initial values prescribed by Eq.(3.9), we seek some discrete approximation

U_ E D to the steady-state solution U" of Eq.(3.1), through the numerical solution of the nonlinear

system of PDE's using a pseudo-time marching scheme and a spatial discretization procedure b_ed

on finite difference approximations.

4.1. IMPLICIT TIME DIFFERENCING

The independent temporal variable r is discretized to produce the set:

D_ = {T.:.e [0,N]}

where the discrete time increment AT is given by:

r. = r_-i + Ar =nAr. (4.1)

Also the discreteapproximation of U on D_ isdenoted by:

u(T)_ u_(._T)= u-. (4.2)

A generalizedsingle-steptemporal differencingscheme for advancing the solutionof Eq.(3.1)

isgiven by ([10]):

I
_aT 0AU"+ aT ou-+ 0 au._ _+o[(__AU"
(1+0) Or (1+0) 0r (1+0-_ --0)AT2 +AT3]"

(4.3)

where the forward difference operator A is defined as:
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AU" = U "+I - U". (4.4)

With the appropriatechoiceforthe parameters fl and 0,Eq.(4.3)reproduces many of the well

known two- and three-level,explicitand implicitschemes. In thisparticularcase,we are interested

only inthe two-level,first-orderaccurate,Euler implicitscheme given by/3 = 1 and 0 = 0,i.e.:

AU" = Ar 8AU" . aU"
01" + ArTT + O[Ar2]"

Substituting for (cgAU"/Or) and (oqU/Or) in Eq.(4.5), using Eq.(3.1a), we get;

(4.5)

au" = a_[a(az- + aT") a(aF- +av-) a(aG- + aw-)]

+ _[o(z+ T)" + O(F+V)" + 0(G+W)"] + a_H."
0_ a_ a¢

(4.6)

where AE" = E "+1 - E" and E "+I = E(U "+I) etc.

Eq.(4.6)isnonlinearinAU '_asa consequenceofthe factthatthe incrementsAE '_,AF", AG '_,

AT '_,AV" and AW n are nonlinearfunctionsof the dependent variablesU and itsderivativesU_,

U n and U(. A linearequation with the same temporal accuracy as Eq.(4.6)can be obtained by a

linearizationprocedure using a localTaylor seriesexpansion in time about U", ([11],[12]);

AIso,

0E ,
_,"+' =z" +(bV) a_+o(a_ _)

0E . 0U .
= z- + (_--_)(-0-V)a_ + o(a_").

(OU..U "+_=U"+ _-r) Ar

Then, by combining Eq.(4.7) and (4.8), we get;

or,

(4.7)

+ o(a_). (4.8)

(_E n n+l

_'_n+l __ En jr (____) (U - U n) Jr O(AT2).

AE" = A"(U)AU" + O(Ar2).

(4.9)

(4.10)

where A(U) is the Jacobian matrix (0E/oqU).

It should be noted that the above non-iterative, time-linearization formulation does not lower

the formal order of accuracy of temporal discretization in Eq.(4.6). However, if the steady-state
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solutionis the only objective, the quadratic convergence of the Newton-Raphson method (for sum-

ciently good inital approximations) is recovered only as AT --. oo.

Similarly, the linearization of remaining terms gives;

where,

0F n n
aF" = (Tff) au +o(a__)

= B"AU" + O(_r2).

_G n
_G" = (_U)_U +O(A__)

= C"AU" + O(ar2).

aT . . OT

AT" = (_-_) AU + (_U-_)"AU_ + O(AT _)

= M"AU" + N"AU_ +O(Ar _)

0(NflU)"

= (M - N_)"AU" + O_ + O(Ar2)"

OV .OV .- .

_v" = (Tff)"_u"+ (_ff_)_u, + O(A_')

= (p _ Q.).AU . + 8(QAU)" + O(Ar_)"
0,7

.#W. _ .@w. .,

Aw" = (Tff)au + (_0-_) au_ +o(_ _)
o(sau) _

= (R- S<)"AU" + O_ + O(Ar2)"
+

OF

B(U) = 0-'-U"

(4.11a)

(4.11b)

(4.11c)

(4.11d)

(4.11e)

(4.12a)

0G

C(U) = _--_. (4.12b)

OT OT ON

M(U, U_) = 0-U; N(U) = _0U--; N_(U, U_) = --_-. (4.12c)

P(U, Un) 0V 0V 0Q
= _--_; Q(U) = _-U-_; qn(u, Uv)= -ff_-. (4.12d)

0W 0W 0S

R(U, U()= -_-; S(U) = (gO_ So(U, UC)= _-. (4.12e)

When the approximations given by Eq.(4.11) are introduced into Eq.(4.6), we obtain the fol-

lowing linear equation for AUn;
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{I- At[ 0(A + M - N_)" + 0_(N)"
O_ 0_2

O(B + P - qn)" o2(q)"

Or/ Off

+ 0(C + R - S_)" + 02(S)_____
0¢ 0( 2

+ T)" O(F + V)"
Ar[0(E0_ + 0,7

]}AU" =

o(G+ w)-+
o¢

It should be noted that the notation of the form:

+H'].

(4.13)

[0(A + M - N_)"]AU -

isused to representthe expressionsas such:

O[(A + M- N_)"AU"] etc.
0_

The lefthand side(i.e.,LHS)of Eq.(4.13)isreferredto as the implicitpart and the righthand

side(i.e.,RHS) as the explicitpart.

The solutionat the advanced time, r = (n + l)Ar isgiven by:

U "+x =U"+AU _.

The Jacobian matrices forthe problem under considerationare given by:

(4.14)

A .m.

where,

0 -1 0 0 0 '_

[_(_)/_(_)]_- q (k_ - 2)[_(_)/_(_)] k_[.(2)/_(_)] k_[_(')/.(_)] -_2

[_c_)_(_)]/[_c_)]_ _[_(_)/_c,)] _[_(_)/_c,)] o o

[.c2)_(,)]/[_c_)]2 _[_(_)/_(_)] o _[_(_)/_c_)] o

_- ..,2 k_[-(2)_(_)]/[_(_)]_ k_[_(2).(')l/[_(_T-_[_(_)/_(')],

q = (_){ [,,(2)]2+ [,_(,)]2["(_)]_+ [,_(,)]2},

,_(2)
as, = {k,l,J(s)/u (1)] - 2q)[-T{]-],

a-= (_-){ 3['L(_)]2 [,_(,)]= } - k'[u-_]"
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B .._,

where,

(' 0 0 -1

[,.,c_),,,c,_]/[,_c,)]_ o -[,d"/,,,c,_]

U(3)

0 0

0 0

k2[u¢4)1ucl)] -k:,

['uCs)/d_)] 0

k2['_c3_uc'_]/[_¢'_1_-k, [,c3)/_c,

i,,_= (_..){ [_c:,_]2+ 3[_c:,]_[,_o.)]_+ [_c.,)]_} _ k' [_-"_'z_]'_c_

C ._.

where,

0 0 0

[.,.,c',_,.,c,_]/[_c,_]__[uc,quo_l o

['d:%c')]/[d'_]2 o -[.d')/.dl_]

[,.,c,)/_c,_]__ ,z k2[d2_/_c')] k,,[uc_)/_c,)]

u(s) u(4)

_, = {k,[-_]- 2q}[_q._.],

-1 0

-[u(_)/u ¢1)] 0

[u¢s)/u0')] o

(k2- _)[_c,_/uc,_] _k_

c_, -_ [u(_)/d_)]

(M - N¢) = [0].
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N

-k_k,(,_*_/[¢_]_)

0

[4.13.]k3k_(1.1uO))

0

0

0

0 0

0

0

0

0

n55

w he re,

ns, = - [(4.13.)kak4 - klk3k4ksl([u(2)] 2/[_c,)]_)

- [k_, - k,k_,k,]([_C_)]_/[_c')p)

-[k:_k,,- k,k3k,,,k,,]([,,C_]_/[,,C')]_)

_ k,k3k,,ks(,,Cs)/[,,Cl)],),

ns2 =([4.13.]kak4 - ki k3k4k_ )(u (2)/[_0)1'),

_ =d__ + (k,k_k,k_)(1./_C'_).

(P - q_) = N.

Q

-(4./3.)k3k,(u¢3)/[_C_)] 2)

qs1

0

d(:)+

kakdl./uO) )

0

q52

0

0

d_3_+
(4./3.)kak4(1.1,,¢'_)

0

q53

0

0

q54

o_

0

0

0

qss

where,
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(R- S¢) = [0}.

S

where,

-k_k,(¢3)/[d'G ')

-(4./3.)k3k,(u(')/luO)]2)

851

0

d_2)+

k3k,(L/uO))

0

0 0

(4./3.)kak4(1.1u(i))

0

0

_52 853 854 855

•_, = - [k_k,- k,k,_,,k,]([,,(2)]_/[,.,(')]3)

- [k_k,- k,k_k,k_]([_(_)]_I[,.,(')]_)

- [(4./3.)k3k, - kik3k, ksl([u('t)] 21[`,(')1_)

- klk_#,,,k,(,.,(_)/[,,_')]*),

_ =(k_k,- k,k_hk,)(d')l[d')]_),

_,,, =([4./3.]k3k4 - k,k_k4ks)(,= (4)l['u(')]_),
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4.2. SPATIAL DISCRETIZATION

The independent spatial variables (_, r/, _) axe discretized by covering D, ( the closure of D),

with a mesh of uniform increments ( h_, hn, h( ) in each of the coordinate directions. The mesh

points in the region will be identified by the index-triple (i,j,k), where the indices i E [1, N_],

j E [1, Nn] and k E [1, N(] correspond to the discretization of _, )7 and _ coordinates respectively.

Dh U ODh = (((i, _Tj,(k) : 1 < i < N_,I < j _< N, 7,1 < k < N_}

where,

_, = (i- 1)h_;

and the mesh widths are given by:

n_ = (j - 1)h,; ¢_ = (k - 1)h¢. (4.15)

h_ = 1.1(N_ - 1); hn = 1.1(N,- 1); h( = 1.1(N¢- 1) (4.16)

with (N(, Nn, N() • N being the number of mesh points in (-, 71- and _-directions respectively.

Then, the set of interior mesh points is given by:

Dh = {((i, r/j,(k): 2 < i < (N_ - 1),2 < j _< (N, - 1),2 _<k _< (N( - 1)}

and the boundary mesh points by:

ODh = {((,,r/j,_k): i • {1,Ne}} U {((i,r/j,(k): j • {1,Am}} tJ {((i,r/j,_k): k • {1,N(}}.

Also, the discrete approximation of U in (/)x Dr) is denoted by:

U(r,(, rl,_)- U_(nAr,(i- 1)h_,(j- 1)hn,(k- 1)he) = U_j.k. (4.17)

4.3. SPATIAL DIFFERENCING

The spatial derivatives in Eq.(4.13) are approximated by the appropriate finite-difference quo-

tients, based on the values of U_ at mesh points in Dh U ODh. We use three-point, second-order

accurate central difference approximations in each of the three coordinate directions.

In the computation of the finite-difference approximation to the RHS, the following two general

forms of spatial derivatives are encountered, i.e.:

o_(,_)(u)
0(

and

ot(')(u, u_)
0_
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The first form is differenced as (using m-th component vector function E as an example):

Oe(_)(U)
[i,j,k = (1/2h_)[e('_)(Ui+,j,k)- e(')(U,_tj,k)] + O(h_). (4.18)

The second form is approximated as (using m-th component of vector function T as an example):

Ot("O(U, Ue)l,j,k= (1/h_){t('_)[(U_+1,j,k+ Ui,j,k),(U_+t,j,_- U_j,k)]

Of 2 h e (4.19)

- t(_)[(U_'"k+2u_-"_'k),(u,,,,k-h_V,-,,;,k )]}+ O(h_),

for 2 < i < (N e - 1). Similar formulas are used in the ,7- and _- directions as well.

During the finite-difference approximation of the spatial derivatives in the implicit part, fol-

lowing three general forms are encountered:

and

O[a(',_)(U)A,,(O]

0f

O2[n(_,')(O)/_u(')]

The first form is approximated by the following:

O[a(m't)(U)Au(O]lij,k _ [(1/2h_){a('n'O(Ui+,,j,k)}lAu_O+l.j,k-t(1/2h_){a('n't)(Ui_l,j,k)}lAulOlO,k.of
(4.20)

The second form is differenced in the following compact three-point form:

0[m(_")(U,U_)au(')]I,,,,k [(1/2h_){re(m,0[(Ui+, ,j,k+ U_,j,k),(U_+, .j,_- Ui,j.k)]}]Au(t)i+1,j,k
0_ 2 h_

+ [(1/2he){m(,n,0[( Ui+l,j,k + Uij,k) ), ( Ui+l,j,k - Ui,j,k )]
2 h e

_ m(,n,0[(Ui,j,k4-U___,j,k - Ui-l,j,k ,,_a (l)2 ), (U_,j,_ h_ )j_j_u,,j,_

_ [(1/2h_){m(,.,O[ ( U{,i,} + U__Li,a ), ( U_,i,} - Ui_z,3,} _a (0
2 h{ }JI_"_Ui-l'j'k"

(4.21)

Finally, the third form is differenced as follows:

of: I,,,,k,_[(X/_}){n("')(U,+,,,,,)}]:'_,l')+,,,,,_
(m,O .- (t)

-[(2/he){n (Ui,j,_)}lAu,,j,_

/h_tn(m,O:U . _Au(_)+[(1: ¢:_ _ i-_,j,kH_ i-_,_,_"

(4.22)
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4.4. ADDED HIGHER ORDER DISSIPATION

When central difference type schemes are applied to the solution of the Euler and Navier-Stokes

equations, a numerical dissipation model is included, and it plays an important role in determining

their success. The form of the dissipation model is quite often a blending of second-difference and

fourth-difference dissipation terms ([4]). The second-difference dissipation is nonlinear and is used

to prevent oscillations in the neighborhood ofdiscontinous (i.e.,C °) solutions, and is negligible where

the solution is smooth. The fourth-difference dissipation term is basically linear and is included to

suppress high-frequency modes and allow the numerical scheme to converge to a steady state. Near

solution discontinuities, it is reduced to zero. It is this term that affects the linear stability of the

numerical scheme.

In the current implementation of the synthetic problem, a linear fourth- difference dissipation

term of the following form:

4 04U" 04U" 6_U".

- A  N-g U +h; 07 + h -g l,

is added to the right hand side of Eq.(3.1a). Here, e is a specified constant. A similar term with

U n replaced by AU" will appear in the implicit operator, if it is desirable to treat the dissipation

term implicitly as well.

In the interior of the computational domain, fourth-difference term is computed using the

following five-point approximation:

h 4 c94un U n 6U_,j, k U" (4.24a)_'-'_ i,j,a ._, i+2,j,k - 4U_+t,j,_ + -- 4Un-l,j,k "}- i-2,j,k,

for4<i< (N_-3).

At the first two interior mesh points belonging to either end of the computational domain, the

standard five point difference stencil used for the fourth-difference dissipation term is replaced by

one-sided or one-sided biased stencils. These modifications are implemented so as to maintain a

non-positive definite dissipation matrix for the system of difference equations ([16]).

Then, at i = 2:

and at i = 3:

Also at i = N_ - 2:

.4 04U" U" 4U_+ 1 + 5U_j,k ,
a_ _ i,j,k TM i+2,j,k -- ,j,k

h4 0 4Un un

8 4 U _

- 4 i-l,j,k + i-2,j,k,+ 6uL-. u" u"

(4.24b)

(4.24c)

(4.24d)
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andat i= N_- 1:
_4Un

h_{,j,k _ 5U_,y.k -4U,_zj.k + U_-2.j._.

Similar difference formulas are also used in the 7/- and ¢- directions.

(4.24e)

Also, for vector functions T, V and W used here:

(M - N¢) = 0, (P - qn) = 0, (R- S_) = 0.

Then, for the cases where added higher order dissipation terms are treated only explicitly, Eq.(4.13)

reduces to:

02(N) n 0(B)" 82(Q) " O{0.__)" 0_(S)" ]}AU,_ ={I-hr[ + _ + _ + _ + + _-_

°rO(E + T)" 0(F + V)" + 0(G + W)"]A-L _-_ + On 0¢

rh4 04Un h4 04U'_ _4 04 U" 't
- _'_ t _ + --,, on_ + ,,¢-3_j

+ ATH*

(4.25a)

When the implicit treatment is extended to the added higher order dissipation terms as well,

Eq.(4.13), ta_kes the following form:

{I - At[

Ji- m

02(N) n _ h 4 04(I)

0(B)" 02(Q)" 6h 4 04(I)
0n + on2 ' oj

0(C)" 0_(S) '_ ch_ 04(I)..,,o¢ + o¢2 -y_-]}_,u =

+ T) '_ 0(F + V)" + 0(G ÷ W)"]_[0(E0_ + 0n 0¢

04U" 04U" h 4 04U" 1

+ ArH"

(4.25b)

The modified vector forcing function is given by:

E0(_U 0F(U') 0G(U*)H'(_, 77,_) = _[0 *) + 0-----_ + 0_

0T(U',U_) 0V(U', U;) 0w(u',u_)]
+ 0_ + 0,7 + 0_

+ c[h_ 04U" h4 04U* h 4 04U*"
--_+.., 0_74 + <:--_], for(_,r/,_)eD x D_

(4.26)
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4.5. COMPUTATION OF THE EXPLICIT PART (i.e.,RHS)

The discretized form of the explicit part of Eq.(4.25) is given by:

W I$[RHS]"]i.J,k_Ar[De(E+T)"+D,7(F+V)'_+D_(G+ ) ]lij,k

AT"_ 4 4 n _4 T)4_n 4 4 n- [h_DeU +..,_,_ +h_DcU ]l,j,k

+ Ar[H']lij,k.

(4.27)

where D e , D, and D( are second-order accurate, centrM spatial differencing operators, defined in

Dh. At each point in the mesh, [RHS]i_j,k is a cohmm vector with 5 components. Discretization

of added higher order dissipation terms was already discussed in Sec.(4.4). Here we consider the

computation of the first term in Eq.(4.27), using formulas given in Eq.(4.18) and Eq.(4.19):

n -E n[D_(E + T) '_ + D,(F + V)" + Dc(G + W) ]lij,k = (1/2he)[E(U_+tj,k) (Ui-tj,k)]

U" U" U_'+, j, k - U"
+(1/he){T[ ( i+,,j,_+ i,j,,),( i,j,k)]

2 h e
V_ n

- T[( ij,k + Ui-lj,k), (Uij,k - U-".-_.,.k)])
2 he

+ (1/2h,)[r(u_,,+_,_)- F(uL_,,_) ]
U" U" U" U"

+(1/h,){V[( "_+*'_+ i,,,k),( _,,+,,k- _,,,k)]
2 h.

U '_ U" U'* U"
- v[( ..,.k+ _.,-_.k).( ,._.k- ,.,-,.k)]}

2 h.

+ (i/2h0[G(U?,_,_+_)- G(UL.,___)]
U" U.". U" - U"

+(l/h0{w[( _,j,k+_+ ,,,,_),( ,,,,k+, _,_,k)]
2 h(

U" U" U.". U"
-w[( _.i.k+ ,.j.k-_),(.,,._-_,,.k-_)]},

2 he

- (4.28)

for {(i,j,k) 6 Oh}. Also, [RHSli_j,k = 0 for i = 1 or Ne, j = 1 or N. and k = 1 or N¢.

This right hand side computation is equivalent in terms of both arithmetic and communication

complexity to a regular sparse block (5 × 5) matrix-vector multiplication, which is the kernel (c).

However, its efficient implementation, in this case, does not necessarily require the explicit formation

and/or storage of the regular sparse matrix.

4.6. COMPUTATION OF THE FORCING VECTOR FUNCTION

Given the analytical form of U*, the forcing vector function H* can simply be evaluated

analytically as a function of _, 77, and _, using Eq.(4.26). This function, along with Eq.(4.15), can

then be used to evaluate [H*]i,j,_, which is also a colunm vector with 5 components.

57



Here, we opt for a numerical evaluxtion of [H*]_d,k , using [U']_,j,k and the finite-difference

approximations of Eq.(4.18) and (4.19), as in the case of Eq.(4.28).

[H*][,,j,k _ (1/2h_)[E(V:+id,k) - E(U:_I,j,k) ]

+ (1/h_){T[( U_+I'j'_ + UT, j,k), (UT+,j,k - UTd,k)]
2 h_

- T[( V_'J'k + UT-I'J'J' ), ( UT'J'k - UT-l'J'k )]}
2 h_

+ (1/2h,)[F(U:,j+l,k)- F(U:d_l,k) ]

+ (1/h,){v[(U_'i+l'k + ULk), (UT'_+_'_- V:.,.k)]
2 h,

(4.29)

_ v[(UT._.k+ uL-I._ ),(vL.k- ur.__l._)l)
2 h,

+ (1/2h¢)[G(U_*j,k+l)- G(U;,,,k_1) ]

u',_,k+_+ u:,_,k),(UT,_,k+_-- U_,_,_+ (1/h0{w[( )]
2 he

- w[(UT'_'k+ u;._.__l), (vT'_'k- uT.j.___)]},
2 h(

4 4 h4 n4T]'- 4 4 =+ e [h_D_U" + -,7--,7-- + hcDcU ][_j,_,

for {(i,j,k) E Dh}. The fourth difference dissipation terms are evaluated using Eq.(4.24). Also,

[H];j, k=0fori=lor N_,j-- lorN. andk= lorN¢.

4.7. SOLUTION OF THE SYSTEM OF LINEAR EQUATIONS

Replacing the spatial derivatives appearing in Eq.(4.25) by their equivalent difference approx-

imations results in a system of hnear equations for [AUn]i,j,k for i E [2, N_ - 1], j E [2, N n - 1]

and k E [2, N_ - 1]. Direct solution of this system of hnear equations requires a formidable matrix

inversion effort, in terms of both the processing time and storage requirements. Therefore, AU _

is obtained through the use of an iterative method. Here we consider three such iterative meth-

ods, involving the kernels (a), (b) and (d). All methods involve some form of approximation to

the implicit operator or the LHS of Eq.(4.25). For pseudo-time marching schemes, it is generally

sufficient to perform only one iteration per time step.

4.7.1. APPROXIMATE FACTORIZATION (BEAM-WARMING) ALGORITHM

In this method, the implicit operator in Eq.(4.25a) is approximately factored in the following

m_ner, ([11,[91):

0_(N).{I-at[ + 0_2 __ _ 0_(S)------I_]}× {_-a_[ + 0_(Q)"]}O._× {_-a_[ + _¢: ]}AU_ = RHS

(4.30)
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The Beam-Waxming algorithm is to be implemented as shown below:

INITIALIZATION:

Set the boundary values of Uij,k for (i,j, k)E ODh in accordance with Eq.(3.7).
t

0
Set the initial values of Ui,j, k for (i, j, k) E Dh in accordance with Eq.(3.8).

Compute the forcing function vector, H_,j, k for (i,j, k) E Dh, using Eq.(4.29).

STEP 1: EXPLICIT PART.

Compute the [RHS]_,j,k for ( i, j, k) E Dh.

STEP 2: _-SWEEP OF THE IMPLICIT PART.

Form and solve the following system of linear equations for [AU1]i,j,k for (i,j, k) E Dh:

{I- Ar[D_(A) n + DI(N)n]}AU1 = RHS.

STEP 3: r/-SWEEP OF THE IMPLICIT PART.

Form and solve the following system of linear equations for [AU2]i,j,k for (i,j,k)E Dh:

{I- At[Dr(B) _ + D_(Q)_])AU2 = AU1

STEP 4: (-SWEEP OF THE IMPLICIT PART.

Form and solve the following system of linear equations for [AUn]i,i,k for (i,j, k) E Dh:

{I- At[De(C)" + D_(S)"]}AU" = AU2.

STEP 5: UPDATE THE SOLUTION.

U n + 11 7,ji,j,k = [U ]_,j,k + [AU'_]_,j,k, for (i,j,k) e Dh

Steps (1)- (5) consists of one time-stepplng iteration of the Approximate Factorization scheme.

The solution of systems of linear equations in each of the steps (2) - (4) is equivalent to the solution

of multiple, independent systems of block tridiagonal equations, with each block being a (5 × 5)

matrix, in the three coordinate directions _, 7/,( respectively. For example, the system of equations

in the _-sweep has the following block tridiagonal structure:

+ = [RHSh,j,k,

[Ai,j,k][AU1]i-l,j,_ + [Bi,j,k][AVl]i,j,k + [Ci,j,k][AUl]i+l,j,k = [RHS]ij,k; 2 < i < N_ - 1.

[_N,,j,k][A UllNt-I,j,k "_- [_N¢,j,k][A UI]N,,j,k = [RHS]Nt,j,k.

(4.31)
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where, (j E [2, N_- 1]) and (k E [2, N¢- 1]). Also, [Jt], [B] and [C] are (5x5) matrices and [AU1]ij,k

isa (5 x 1) column vector.

Here, for 2 < i < (N_ - 1), using Eq.(4.20) and (4.22):

[Aid,k] = -Ar{(-1/2h_)[A(U'__lj,k)] + (1/h_)[N(U__l,j,_)]},

[Bid,_] = I + Ar(2/h_)[N(U_,j,k)], (4.32)

[Cid,_] = -Ar{(1/2h_)[A(U_+,j,k) ] + (1/h_)[N(U_+,j,k)]}.

Also, [B,.j,k] = [I], [Cid,k] = [0], [ANoj,k] = [0], and [BN, j,,] = [I].

4.7.2. DIAGONAL FORM OF THE APPROXIMATE FACTORIZATION ALGO-

RITHM

Here the approximate factorization algorithm of Sec.(4.7.1) is modified so as to transform the

coupled systems given by the left hand side of Eq.(4.25b), into an uncoupled diagonal form. This

involves further approximations in the treatment of the implicit operator. This diagonalization

process targets only the matrices A, B, and C in the implicit operator. Effects of other matrices

present in the implicit operator are either ignored or approximated to conform to the resulting

diagonal structure.

The diagonalization process is based on the observation that matrices A, B and C, each have

a set of real eigenvnlues and a complete set of eigenvectors. Therefore, they can be diagonalized

through similarity transformations ([13]):

A = T_AeT__;

B = T,TA,T_'I;

C = T(ACT_ -1

(4.33)

with,

A_ = Diag [-(u(2)/u(1)), --(U(2)/U(1)), --(U(2)/U(1)), --(It(2)/U (1) Jr- a), --(u(2)/u (11 -- a)];

A, = Di.g [_(_<3_/_c,_),_(_l.)/_¢,)), _(._,_/_,)), _(_/_,_ + .), _(_<_/_o_ _ .)];

A¢= Diag [-(_'_/_"_), -(_<'_/_1_), -(_'_/_'), -(_'_/_"_ + .), _(_,1/.._ _ .)],
(4.34)

where,

.= _/c c2__') [[_2_12+ [_3_12+ [_<,_1_, tu--T_ -0.5 [4(,)] 2 ]} (4.35)

and T_(U), T_(U) and T¢(U) are the matrices whose columns are the eigenvectors of A, B and

C respectively. When all other matrices except A, B and C are ignored, the implicit operator is

given by:

Ar OA_ "'I OB'_ Ar 0Cn"
LHS : [I- ---_-J[ - Ar-_-][I- --_--J (4.36 /
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Substituting for A, B and C, using Eq.(4.33) in Eq. (4.36), we get:

O(T(A(T_q) n
LHS =[(T(T_'I) n- Ar 8_ ]

(4.37)

× [(T,T_I)n _ ArO(T,A_T_) n )n O(T(A(T_t)_]AUn
0,7 ] × [(T(T_ - Ar 0(

A modified form of Eq.(4.37)is obtained by moving the eigenvector matrices T_, T n and T( outside

the spatial differential operators 0/0_, a/a_7 and 0/a( respectively, ([13]):

0(&)" ...._ ^
LHS = T_[I- _r--_--]('r_ )_(Tn)_[I- Ar0('_')"](T_t)_(T()n[I - Ar0(A¢)"]tT-')_AU ,,

a,7 O( J_-¢

This can be written as:

- A "
LHS= T_[I-Ar_]N[I-Ar_]P[I- Ar_](T_I)_AU _

where,

(3.38)

The eigenvector matrices are functions of _, 7; and ( and therefore this modification introduces

further errors of O(Ar) into the factorization process.

During the fa£torization process, presence of the matrices N,Q and S in the implicit part were

ignored. This is because, in general, the similarity transformations used for diagonal]zing A do not

simttltaneously diagnnalize N. The same is true for the 17and ( factors as well. This necessitates

some ad-hoc approximate treatment of the ignored terms, which at the same time preserves the

diagonai structure of the implicit operators. Whatever is the approach used, additional approxima-

tion errors axe introduced in the treatment of the implicit operators. We chose to approximate N, Q

and S by diagonal matrices in the implicit operators, whose values axe given by the the spectrai

radii p(N), p(Q) and p(S) respectively ([17]). In addition, we also treat the added fourth-difference

dissipation terms implicitly.

LHS = T_[I - At{ 0(_)"_. + 02[p(N)nI]0_2 e h 4 o4(I)_(-_]

x lq[I- At{ O(A')" 02[P(Q)"I]
&; + 0_;2

x/_[I Ar{O(_ )" 02[p(S)"I]- + 0C2

The matrices T_ "I,T(,I_1-1 and _-t are given by:

(I- [qla2])
T__= (_(3)I[u(_)]2)

_(q - al_(_llu(i_])
_(q + _[_(_)I_(,)])

_(I)ll

4
l,, O (I)_,l_-l^,,,,

f ,.(-_-/ji( 4.t_J .

(4.39)

o o (1/,_o)) o
0 -(llu (1)) 0 0

_(a-_[_(_)l_(')])-_<_{_(_)I_(_)]-_c_[_(')l_(_)]_
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T C =
0

0
uO)

0

u(a)

0
_.(1)

0

0

-uO)

1

[u(2)I_,(i)]
[u(S)lu(1)]

[u(4)I_(I)]

,.[_(2)I.(i)]
_[u(3)I_(i)]

a([u(4)/u(1)]+ a)

_[(q+._)i_+.(,_I,Jl,_m)]

_b,(2)l-(_)]
_[_(3)/,,(I)]

a([u(4)lu(1)]- a)

_[(q+ ,,_)i__ .(,,I,_l,,m)]

oo)0 0 0 0

o o _/v_ -_/v_ ,
o -1/v_ _/2 _/2
o 1/v_ 1/2 1/2

o o l/ -1/v/2 )

o o°1 oV_ o
_l-i= 0 1 0 0 0 ,

-1/v/2 0 0 1/2 1/2

1/v_ 0 0 1/2 1/2

where_ = 1/(v_um,) and _ = [um/(v_.)].

In addition, the spectral radii of the matrices N, Q and S are given by:

p(N) = maz( d_'),

d_') + [4./3.]k3#q[1./uO)],

d__ + k_k,[1.1,,m],

e_'_+ k_k,[1./,,o>],

d_s) + k,k_k,,k,[1.1,,<'G),

p(Q) = m._(d?),

d?) + k_k,[1.1¢')],

d?) + [4./3.]k3k4[1./_O)],

d__)+ k_k_[1./¢')],

d__)+ k,k_k,k_[L/_,_']),

p(S)- 7flax( d_ 1),

d_'_+ k_k,[1./,,oG,

d_3)+ k3k,[1./_(')],

d_') + [4./3.]k3k,[1./um],

,_ + k,k_k,k_[1./,,_')]).
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The explicitpart of the diagonal algorithm isexactly the same as in Eq.(4.26b ) and all

the approximations axe restrictedto the implicitoperator. Therefore,ifthe diagonal algorithm

converges,the steady-statesolutionwillbe identicalto the one obtained without diagonalization.

However, the convergencebehavior of the dlagonallzedalgorithm would be different.

The DiagonalizedApproximate Factorizationalgorithmisto be implemented in the followingorder:

INITIALIZATION:

Set the boundary values of U_j,k for (i,j,k)E ODh in accordance with Eq.(3.7).

Set the initial values of U°j.k for (i,j, k)E Dh in accordance with Eq.(3.8).

Compute the forcing function vector, H_,j, k for (i,j, k) E Dh, using Eq.(4.29).

STEP 1: EXPLICIT PART.

Compute [RI-IS]_j, k for (i, j, k) • Dh.

STEP 2:

Perform the matrix-vector multiplication:

[AU,] --(T_')n[RHS].

STEP 3: _-SWEEP OF THE IMPLICIT PART.

Form and solve the following system of linear equations for AU2:

{I - Ar[D¢(A_) '_] - Ar[DI(p(N)"I)] + Ar[e h_D_(I)]}[AU2] = [AU1].

STEP 4:

Perform the matrix-vector multiplication:

[AU3] = N-I[AU_].

STEP 5: w-SWEEP OF THE IMPLICIT PART.

Form and solve the following system of linear equations for AU4:

{I- Ar[D,7(A,)" ] - Ar[D_(p(Q)"I)] + Ar[e h_D_(I)]}[AU,] = [AUs].
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STEP 6:

Perform the matrix-vector multiplication:

=



STEP 7: (-SWEEP OF THE IMPLICIT PART.

Form and solve the following system of linear equations for AU6:

' {I- Ar[D_(A¢)"]- Ar[D_(p(S)"I)] + At[, h_D_(I)]}[AU6] = [AUs].

STEP 8:

Perform the matrix-vector multiplication:

[AU "] = TdAU,].

STEP 9: UPDATE THE SOLUTION.

U "+x = U" + AU".

Steps (1) - (9) constitute of one iteration of the Diagonal Form of the Approximate Factorization

algorithm. The new implicit operators are block pentadiagonal. However, the blocks are diagonal in

form, so that the operators simplify into five independent scalar pentadiagonal systems. Therefore,

each of the steps (3), (5) and (7) involve the solution of multiple, independent systems of scalar

pentadiagonal equations in the three coordinate directions _, 7/and _ respectively. For example, each

of the five independent scalar pentadiagonal systems in the E-sweep has the following structure:

a rATT 1('_)
i,j,k[ _-#2]i_2,j, k +bi,j,k[hU2]l m) .. + c (m) d riv.r ](m)-.,a,K i,j,k[AU2]i.j,k + i,j,k[ v2Ii+l,j, k

= [AU1L.j,k, for 3 < i --

(,,,)

+dNt_l,j,k[iU2](Nm¢!j,k (m)"-- [AU1]N¢_I,j,k ,

(4.40)

where, (j E [2, N_- 1]), (k E [2, N(- 1]) and (m E [1,5]). The elements of the pentadiagonal matrix

are given by the following:

cl,j,k = I.; dLj,k = 0.; el,j,k = O.

b2,j.k = Ar(1/2h_)[(A_)"]_,_:_ )- Ar(1/h_)[p(N)_]lj,k,

c_,j,k = 1. + Ar(2/h_)[p(N)n]2,j,k + Ar _ (5),

d2 j,k = -Ar(1/2h_)[(Ae)"]_._.:_ n) At(1 2. - + (--4),
e2,j,k = Av _.

(3.41a)

(4.41b)
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a3j,k = 0.0,

ba,j,k = AT( 1/2h0[ (A_)"]_:_) - AT( 1 / hl)[p(N)"]2 j,k + Are (-41,

c3,i,_= i.+ aT(2/hl)[p(N)"]3._,k+ aT_(_),

da.j.k = -av(l/2h_)[(A_)"]_i_") - Av(l/h_)[p(N)"]4,j,k + AT e (-4),

ea,j, k = AT e.

ai,j,k = ate,

b,,j,_= aT(i/2h0[(&)"]l__/_i-aT(I/q)_(N)"],_,,,,_+ aTe(-41,

cij,k = 1. + Av(2/h_)[p(N)'_]ij,k + AT e (6),

d,.j., = -aT(1/2h_)[(*¢)"]_/_k -- aT(1/h_)[p(N)"],+,,_.,+ aT_ (-4),

ei,j,k = AT_.

aN(-2j,k =

bN(-2j,k =

cN_-aj,k =

dN(-2,j,k =

oN(-2,j,k =

aN(_I,j, k = AT 6,

ate,

ar(1/2h0[(A_)"l("_:"_),j,k - Ar(1/h_)[p(N)"lN,_3,j,k + AT e (--4),

1. + Ar(2/h_)[p(N)"]N,_2j,_ + Are (61,

-ar(1/2h(l[(A¢l"l_:_)j,k - ar(1/h_l[p(Nl"l_,_,j,k + AT e (--4/,

0.0.

bN,-,,£k = Az(1/2h_)[(A()n](_'__)j, k - Ar(llh_)[p(N)"lN__2,j,k + AT _ (-4),

c_-,,_,k = 1. + av(2/h_)[p(N)"]N__,,zk + Ave (5),

dN_-,,j,k = -a T( 1/2h_)[(hf)"]('_:_, ) - AT( 1/h})[p(N)n]N_,j,_.

aN{,j,k = 0.; bN(,j,k = 0.; CN(,j,k = 1.

(4.41c)

(4.41d)

(4.41e)

(4.41f)

(4.419)

4.3.5. SYMMETRIC SUCCESSIVE OVER-RELAXATION ALGORITHM

In this method, the system of linear equations obtained after replacing the spatiM derivatives

appearing in the implicit operator in Eq.(4.25a) by second-order accurate, central finite difference

operators, is solved using the symmetric, successive over-relaxation scheme. Let the Linear system

be given by:

[K'_I[AU '_] = [RHS n] (4.42)

where,

K" = {I- AT[D_A" + D_N '_ + D,B" + D_Q" + D(C" + D_S"]}AU", for (i,j,k) 6 Dh.

It is specified that the unknowns be ordered corresponding to the gridpoints, lexicographica/ly,

such that the index in _-direction runs fastest, followed by the index in _/-direction and finally in
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_-direction. The finite-difference discretization matrix K, resulting from such an ordering has a

very regular, banded structure. There axe altogether seven block diagonals, each with a (5 × 5)

block size.

where,

The matrix K can be written as the sum of the matrices D, Y and Z:

K" = D" +Y" + Z", (4.43)

where,

[X"][AU"] = [RHS]

X" = w(2.- w)(D" + wY")(D")-I(D" + wZ"),
(4.45)

= w(2. - w)(D" + wY")(I + w(D")-IZ ")

and w E (0.,2.) is the over-relaxation factor (a specified constant). The SSOR algorithm is to be

implemented in following manner:

INITIALIZATION:

Set the boundary values of Ui,j,k in accordance with Eq.(3.7).

Set the initial values 0of Ui,./,_ in accordance with Eq.(3.8).

Compute the forcing function vector, H_j,k. for (i,j, k) E Dh, using Eq.(4.29).

STEP 1: THE EXPLICIT PART.

Compute [RHs]_,j,k for (i, j, k) e Dh.

STEP 2: LOWER TRIANGULAR SYSTEM SOLUTION.

Form and solve the following regular, sparse, block lower triangular system to get [AUt]:

(D '_ + wY")[AU_] = [RHS].

STEP 3: UPPER TRIANGULAR SYSTEM SOLUTION.

Form and solvethe followingregular,sparse,block upper triangularsystem to get [AU"]:

(I + _(D")-_Z")[AU "] = [AU,].

66

(4.44)

D n = Main block - diagonal of Kn;

Y" = Three sub - block - diagonals of K";

Z '_ = Three super - block - diagonals of K".

Therefore, D is a block-diagonal matrix, while Y and Z axe strictly lower and upper triangular,

respectively. Then the point-SSOR iteration scheme can be written as ([14],[15]):



STEP4:

Updatethe solution:

U"÷I = U" + [i/w(2.- w)]au".

Steps (1)-(4) constitute one complete iteration of the SSOR scheme. The l-th block row of the

matrix K has the following structure:

['_I][AUn]I-(Nt-2)(N_-2)÷ [BI][AUn]I-{N{-2)"[-[Cl][AUn]I-Inu[_)/][AUn]/

+ [E,][ag"]_+l + [F_][aU"]_+(N,-2)+ [g_][aU"]t+(N,-2)(N,-_) = [RHS]_
(4.46)

where, 1 = i + (N_ - 2)(j - 1) 4- (N_ - 2)(N, - 2)(k - 1) and (i,j,k) C Dh. The (5 x 5) matrices

are given by:

(4.47)

[,4,]= -aT(- 1/2h¢)[C(UL.k_,) ] - a,(1/h})[S(U_.j.k_,)],

[B,]= -a_(-1/2h,)[B(U_,,_,,_)]- a_(1/h_)[q(U}',j_,.k)],

[C,]= --AT(--1/2h_)[A(U__I j,k)] - AT(1/h_)[N(U__, j,k)],

[:D,]= I + Ar(2/h_)[N(U_j,k)] + Ar(2/h_)[q(u_j.k)] + AT(2/h_)[S(U_j.k)],

[£t]= -Ar(1/2h_)[A(U_+,.j.k) ] - AT(1/h_)[N(U_+,j.k)] ,

[Svt]= -AT(1/2hn)[B(U_j+,,k)]- AT(1/h_)[Q(U_j+,,_)],

[_t] = -Ar(1/2h¢)[C(Ui"j,k+,)]- Ar(1/h_)[S(U_j.a+l)].

Also, .4, B and C are the elements in the/-th block row of the matrix Y, whereas £,_" and _ axe

the elements in the/-the block row of the matrix Z.

5. BENCHMARKS

There are three benchmarks associated with the three numerical schemes described in Sec.(4),

for the solution of system of linear equations given by Eq.(4.25). Each benchmark consists of

running one of the three numerical schemes for N, time steps with given values for N_, Nn, N_ and

AT.

5.1. VERIFICATION TEST

For each of the benchmarks, at the completion of N, time steps, compute the following:

rRHS("h"i) Root Mean Square norms RMSR(m), of the residual vectors t Ji,j,k, for m = 1,2,..., 5

where n = Ns, and (i,j,k) E Dh.

RMSR(m) = I
-' ),u,,=2 {[RHS(")]_:j.k) }_

(N¢ - 2)(N, - 2)(N¢ - 2)
(51)
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* (") ru,,1(m) "t2) Root Mean Square norms RMSE(m) of the error vectors{[U ]i,j,k- t Ji.j,J,J,for m =

1,2,...,5where n = N,, and (i,j,k)E Dh.

RMSE(m) =

E(N¢-I) _-_(Nn-1 ) X-_(N(-l)lfU.l(m ) rTTN, I(m) /2
k----2 g...,j=2 z -i--.2 tt J(i,j,k) -- tv J(I)j,k)J

- 2)(N,,- - 2) (5.2)

3) The numerically evaluated surface integral given by:

j2--1 i 2 -1

3=.71 troll

÷ _i,j,k2 + _i+l,j,k2 "_- _i,j+l,k2 "4" _i+l,j+l,k_]

ka-1 ig-I

+ E E h_h([_i,jl,k + _oi+lj_,k + _i,j_,k+l + _oi+l,.h,k+l
kink1 imil

÷ _i,j2,k "Jr" _Oi+l,ja,k "4" _Oi,ja,k+l Jr _Oi+l,ja,k+l]

ha-I j2-1

kink1 J=Jl

+ _oi_,j,l, + ¢i2,j+l,k + ¢i2,j,J,+l + ¢i2,j+_,k+_]},

(5.3)

where, i_,i2,j_,j2, k_ and k2 are specified constants, such that 1 < il < i2 < N_, 1 < j_ < j2 <

Nn and 1 < k_ < k2 < N(, and:

= c2{u (s) - 0.5( [u(')]3 + [u(2)]2 ÷ [u(3)]_))} (5.4)
u0)

The validityof each these quantitiesismeasured accordingto:

where Xc and X_ are the computed and reference values, respectively, and e is the maximum

allowable relative error. The v_lue of e is specified to be 10-s. The values of X_ are dependent on

the numerical scheme under consideration and the values specified for N_, Nn, N(, Ar and Ns.

5.2. BENCHMARK 1

Perform N_ = 200 iterations of the Approximate Factorization Algorithm, with the following

parameter values:

N_ = 64; N n = 64; N; = 64,

and

Ar = 0.0008.
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Timing forthisbenchmark should begin justbeforethe STEP i ofthe firstiterationisstartedand

end justafterthe STEP 5 of the Ns-th iterationiscomplete.

5.3. BENCHMARK 2
t

Perform Ns -- 400 iterations of the Diagonal Form of the Approximate Fa_:torization Algorithm,

with the following parameter values:

N_ = 64; N, = 64; N C = 64,

and

Ar = 0.0015.

Timing for this benchmark should begin just before the STEP 1 of the first iteration is started and

end just after the STEP 9 of the Ns-th iteration is complete.

5.4. BENCHMARK 3

Perform Ns = 250 iterations of the Symmetric Successive Over-Relaxation Algorithm with the

following parameter values:

= 64; N, =64; N¢= 64,

and

Ar = 2.0 w = 1.2.

Timing for this benchmark should begin just before the STEP 1 of the first iteration is started and

end just after the STEP 4 of the Ns-th iteration is complete.

For all benchmarks, values of the remaining constants are specified as:

kl = 1.40; k2 = 0.40; k3 = 0.10; k4 = 1.00;

CI,1 : 2.0; C2,1 _-- 1.0; C3,1 --- 2.0; C4,1 -- 2.0;

C1,2 = 0.0; C2,2 = 0.0; C3,2 = 2.0; C4,2 = 2.0;

C1,3 = 0.0; C2,3 = 0.0; C3,3 = 0.0; C4,3 = 0.0;

C1,4 = 4.0; C2,4 = 0.0; C3,4 = 0.0; C4,4 = 0.0;

C1,5 = 5.0; C2,5 = 12; C3,s = 0.0; C4,5 = 0.0;

C1,6 = 3.0; C2,6 = 2.0; C3,6 = 2.0; C4,8 = 2.0;

C1,7 = 0.5; C2,7 = 3.0; C3,7 = 3.0; C4,7 = 3.0;

C_,s = 0.02; C2,8 = 0.01; C_,s = 0.04; C4,s = 0.03;

ks = 1.40

C5,1 = 5.0

Cs,_ = 4.0

Cs,3 = 3.0

Cs,4= 2.0

Cs,s=0.I

Cs,6 = 0.4

Cs,, = 0.3

Cs,s = 0.05
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C1,9 -" 0.01;

Cl,lo = 0.03;

C1,11 = 0.5;

C1,12 = 0.4;

C1,13 = 0.3;

C2,9 = 0.03;

C_,1o = 0.02;

C2,n = 0.4;

C2,12 = 0.3;

C_,13 = 0.5;

C3,9 = 0.03;

C3,1o = 0.05;

C3,11 = 0.3;

C3,1_ = 0.5;

C3,13 = 0.4;

C4,9 = 0.05;

C4,,0 = 0.04;

C4,11 = 0.2;

C4.12 = 0.1;

C4,13 = 0.3;

d(:)= )-- )- 4")- )--0.75

e =

Cs,9 = 0.04

Cs,lo = 0.03

C5,11 = 0.1

C5,12 = 0.3

C5,13 = 0.2
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